Abstract
We establish a new geometric criterion for plane homeomorphisms to belong to the class ofq-quasiconforrnal mappings.
References
D. E. Men’shov, “Sur une generalisation d’un théorém de M. H. Bohr,”Mat. Sb.,2, 339–356 (1937).
P. P. Belinskii,General Properties of Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1974).
Yu. G. Reshetnyak,Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).
J. Vaisala,Lectures on n-dimensional Quasiconformal Mappings, Lecture Notes in Math., Springer, Berlin-New York (1971).
V. S. Kud’yavin, “Quasiconformal mappings and α-moduli of families of curves,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 11–13 (1992).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 11, pp. 1566–1568, November, 1999.
Rights and permissions
About this article
Cite this article
Gol’berg, A.L. Quasiconformal mappings and radii of normal systems of neighborhoods. Ukr Math J 51, 1769–1772 (1999). https://doi.org/10.1007/BF02525262
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02525262