Abstract
We give the definition of ρ-perturbations of an abstract wave equation. As a special case, this definition includes perturbations with compact support for the classical wave equation. By using the Lax-Phillips method, we study scattering of “ρ-perturbed” systems and establish some properties of corresponding scattering matrices.
Similar content being viewed by others
References
P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York (1969).
M. Reed and B. Simon, Methods of Modern Mathematical Physics. III. Scattering Theory, Academic Press, New York (1979).
S. A. Kuzhel’, “On the Lax-Phillips scattering scheme for one class of operator-differential equations,” Dop. Akad. Nauk Ukr., No. 5, 22–24 (1995).
S. A. Kuzhel’, “On the abstract Lax-Phillips scattering scheme for second-order operator-differential equations,” Funkts. Anal. Prilozh., 30, No. 1, 70–73 (1996).
S. A. Kuzhel’, “Abstract Lax-Phillips scattering scheme for second-order operator-differential equations,” Ukr. Mat. Zh., 48, No. 4, 452–464 (1996).
S. A. Kuzhel’, Abstract Wave Equation; Definition and Properties of Solutions, Preprint No. 14.96, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1996).
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilben Spaces [in Russian], Nauka, Moscow (1966).
M. G. Krein, “Theory of self-adjoint extensions of semibounded operators and its applications,” Mat. Sb., 20, No. 3, 431–498 (1947).
P. D. Lax and R. S. Phillips, Scattering Theory for Automorphic Functions, Princeton University Press, Princeton (1974).
A. V. Kuzhel’ and V. D. Tret’yakov, “On a generalization of the Lax-Phillips scheme in scattering theory,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 19–21 (1982).
V. M. Adamyan and D. Z. Arov, “Unitary couplings of semiunitary operators,” Mat. Issled., 1, No. 2, 3–64 (1966).
V. M. Adamyan and D. Z. Arov, “On one class of scattering operators and characteristic operator functions of contractions,” Dokl. Akad. Nauk SSSR, 160, No. 1, 9–12 (1965).
B. Szökefalvi-Nagy and C. Foias, Harmonic Analysis of Operators in Hilbert Spaces [Russian translation], Mir, Moscow (1970).
T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with Indefinite Metric [in Russian], Nauka, Moscow (1986); English translation: Wiley, New York (1989).
S. A. Kuzhel’, Abstract Lax-Phillips Scattering Scheme in Pontryagin Spaces, Preprint No. 32.94, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1994).
S. Helgason, The Radon Transform, Birkhauser, Basel (1980).
E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces [Russian translation], Mir, Moscow (1974).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 12, pp. 1615–1629, December, 1998.
Rights and permissions
About this article
Cite this article
Kuzhel’, S.A. On elements of the Lax-Phillips scattering scheme for ρ-perturbations of an abstract wave equation. Ukr Math J 50, 1844–1859 (1998). https://doi.org/10.1007/BF02514201
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02514201