Abstract
We analyze the application of the numerical-analytic method proposed by Samoilenko in 1965 to autonomous systems of differential equations and impulsive equations.
Similar content being viewed by others
References
M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. I,” Ukr. Mat. Zh., 50, No. 1, 102–117 (1998).
M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. II,” Ukr. Mat. Zh., 50, No. 2, 225–243 (1998).
M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: Achievements and new trends of development. III,” Ukr. Mat. Zh., 50, No. 7, 960–979 (1998).
A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Methods in the Theory of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1992).
A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Methods for the Investigation of Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1985).
Le Lyong Tai, “Numerical-analytic method for the investigation of autonomous systems of differential equations,” Ukr. Mat. Zh., 30, No. 3, 309–317 (1978).
Le Lyong Tai, “Numerical-analytic method for autonomous systems with small perturbations,” Vestn. Kiev. Univ., Ser. Mat. Mekh., Issue 20, 66–72 (1978).
A. M. Samoilenko and Le Lyong Tai, “Numerical-analytic method for autonomous systems with small perturbations,” Ukr. Mat. Zh., 31, No. 3, 214–220 (1979).
M. Rontó and S. I. Trofimchuk, Numerical-Analytic Method for Nonlinear Differential Equations, Preprint No. 96-01, Institute of Mathematics, University of Miskolc, Miskolc (1996).
A. Granas, R. B. Guenther, and J. W. Lee, “Some general existence principles in the Carathéodory theory of nonlinear differential systems,” J. Math. Pures Appl., 70, No. 2, 153–196 (1991).
A. M. Samoilenko, “On the justification of the averaging method for investigation of oscillations in impulsive systems,” Ukr. Mat. Zh., 19, No. 5, 96–104 (1967).
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).
N. A. Perestyuk and V. N. Shovkoplyas, “Periodic solutions of nonlinear impulsive differential equations,” Ukr. Mat. Zh., 31, No. 5, 517–524 (1979).
D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman, Pitman Monographs, New York (1993).
A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Methods for Investigation of Periodic Solutions [in Russian], Vyshcha Shkola, Kiev (1976).
S. I. Trofimchuk, “Investigation of solutions of a boundary-value problem for an impulsive system by the numerical-analytic method with improved convergence,” in: Asymptotic Methods in Problems of Mathematical Physics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1988), pp. 32–37.
A. M. Samoilenko and Yu. V. Teplinskii, Countable Systems of Differential Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1993).
S. G. Hristova and D. D. Bainov, “Numerical-analytic method for finding the solution of a boundary-value problem for a system of differential equations with impulses,” Math. Rep. Toyama Univ., 10, 1–22 (1987).
M. U. Akmetov, “Periodic solutions of some systems of differential equations,” Vestn. Kiev. Univ., Ser. Mat. Mekh., Issue 24, 3–7 (1982).
M. U. Akmetov and N. A. Perestyuk, “Periodic solutions of impulsive systems,” Izv. Akad. Nauk Kaz. SSR, Ser. Fiz. Mat., No. 1, 13–17 (1984).
S. G. Hristova and D. D. Bainov, “Numerical-analytic method for finding periodic solutions of nonlinear systems of difference-differential equations with impulses,” Computing, 38, 363–368 (1987).
S. G. Hristova and D. D. Bainov, “A projection-iterative method for finding periodic solutions of nonlinear systems of difference-differential equations with impulses,” J. Approxim. Theory, 49, No. 4, 311–320 (1987).
S. G. Sarafova and D. D. Bainov, “Periodic solutions of nonlinear integro-differential equations with an impulse effect,” Period. Math. Hung., 18, No. 2, 99–113 (1987).
S. S. Gul’ka, “A sufficient condition for the existence of periodic solutions of nonlinear systems of integro-differential equations with pulse influence,” in: Approximate Methods of Analysis of Nonlinear Oscillations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1984), pp. 32–37.
R. N. Butris, “Periodic solutions of nonlinear systems of differential operator equations with pulse influence,” Ukr. Mat. Zh., 43, No. 9, 1260–1264 (1991).
K. V. Tsidylo and S. S. Gul’ka, “On periodic solutions of nonlinear impulsive systems,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 21–23 (1981).
A. M. Samoilenko and N. A. Perestyuk, “On the averaging method in impulsive systems,” Ukr. Mat. Zh., 26, No. 3, 411–418 (1974).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 12, pp. 1656–1672, December, 1998.
This work was partially supported by INTAS (grant No. 96-0915) and OTKA (grant No. TO19095).
Rights and permissions
About this article
Cite this article
Rontó, M.I., Samoilenko, A.M. & Trofimchuk, S.I. The theory of the numerical-analytic method: Achievements and new trends of development. IV. Ukr Math J 50, 1888–1907 (1998). https://doi.org/10.1007/BF02514205
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02514205