Abstract
We prove the solvability of a boundary-value problem in the case where the Bernoulli condition is given on a free boundary in the form of an inequality. We establish the analyticity of the free boundary.
References
A. S. Minenko, “On one thermal problem with free boundary,” Dokl. Akad. Nauk Ukr. SSR, No. 6, 413–416 (1979).
I. I. Danilyuk and A. S. Minenko, “On the variational method for investigation of the quasistationary Stefan problem,” Usp. Mat. Nauk, 43, No. 5, 228 (1981).
A. S. Minenko, “Analyticity of the free boundary in one thermal problem,” Mat. Fizika, Issue 33, 80–82 (1983).
I. I. Danilyuk and A. S. Minenko, “One variational problem with free boundary,” in: Proc. of the Conf. on Mixed Boundary-Value Problems for Partial Differential Equations and Problems with Free Boundaries, Stuttgart (1978), pp. 9–18.
A. S. Minenko, “Axisymmetric flow with free boundary,” Ukr. Mat. Zh., 47, No. 4, 477–488 (1995).
I. I. Danilyuk, “Integral functionals with varying domain of integration,” Tr. Mat. Inst. Akad. Nauk SSSR, 118, 1–112 (1972).
D. Kinderlehrer and L. Nirenberg, “Regularity in free boundary problems,” Ann. Scuola Norm. Super. Pisa. Ser 4, 4, 373–391 (1977).
C. Baiocchi, “Sur une problème á frontiére libre traduisant le filtrage de liquides á traverse des milieux poreux,” C. r. Acad. Sci. A, 273, 1215–1217, (1971).
H. W. Alt and L. A. Caffarelli, “Existence and regularity for a minimum problem with free boundary,” J. Math., 325, 107–144, (1980).
A. Friedman, “Axially symmetric cavities in flows,” Commun. Partial Different. Equat., 8, No. 9, 949–997, (1983).
P. R. Garabedian, H. Lewy, and M. Schiffer, “Axially symmetric cavitational flow,” Ann. Math., 56, No. 3, 560–602, (1952).
M. A. Evgrafov, Analytic Functions [in Russian], Nauka, Moscow (1968).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 12, pp. 1692–1700, December, 1998.
Rights and permissions
About this article
Cite this article
Minenko, A.S. Analyticity of a free boundary in one problem of axisymmetric flow. Ukr Math J 50, 1929–1938 (1998). https://doi.org/10.1007/BF02514209
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02514209