Abstract
A Paley-Wiener-type theorem is proved for connected and simply connected Lie groups.
References
R. Park, “A Paley-Wiener theorem for all two-and three-step nilpotent Lie group,” J. Funct. Anal., No. 133, 227–330 (1995).
G. Polya, Mathematical Discovery [Russian translation], Nauka, Moscow (1978).
A. A. Kirillov, “Unitary representations of nilpotent Lie groups,” Usp. Mat. Nauk, 17, No. 4, 57–101 (1962).
A. A. Kirillov, “On the Plancherel measure for nilpotent Lie groups,” Funkts. Anal., 1, No. 4, 98–100 (1967).
A. A. Kirillov, Elements of Representation Theory [in Russian], Nauka, Moscow (1972).
M. E. Taylor, “Noncommutative harmonic analysis,” in: Math. Surv. and Monographs. Amer. Math. Soc., 22, XVI, Providence, Rhode Island (1986).
S. Lang, SL2(R) [Russian translation], Mir, Moscow (1977).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 11, pp. 1564–1566, October, 1998.
Rights and permissions
About this article
Cite this article
Kisil’, V.V. Paley-Wiener-type theorem for nilpotent Lie groups. Ukr Math J 50, 1786–1788 (1998). https://doi.org/10.1007/BF02524486
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02524486