Skip to main content
Log in

Asymptotic properties of the norm of extremum values of normal random elements in the space C[0, 1]

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We prove that

$$\mathop {\lim }\limits_{n \to \infty } \left( {\left\| {Z_n } \right\| - (2 ln (n))^{1/2} \left\| \sigma \right\|} \right) = 0 a.s.,$$

where X is a normal random element in the space C [0,1], MX = 0, σ = {(M¦X(t2)1/2 t∈[0,1}, (X n ) are independent copies of X, and \(Z_n = \mathop {\max }\limits_{l \leqslant k \leqslant n} X_k \). Under additional restrictions on the random element X, this equality can be strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pickands, “An iterated logarithm law for the maximum in a stationary Gaussian sequence,” Z. Wahrscheinlichkeitstheor. Verw. Geb., 12, No. 3, 344–355 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  2. H. V. Hebbar, “Almost sure limit points of maximum of stationary Gaussian sequences,” Ann. Probab., 8, No. 2, 393–399 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  3. I. K. Matsak, “Limit theorem for the maximum of Gaussian independent random variables in the space C,” Ukr. Mat. Zh., 47, No. 7, 1006–1008 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  4. I. K. Matsak, “On the limit points of the sequence of extremum values of normal random elements in Banach spaces with unconditional basis,” Teor. Ver. Mat. Statist., Issue 55, 136–143 (1996).

    Google Scholar 

  5. J. Galambos, The Asymptotic Theory of Extreme Order Statistics [Russian translation], Nauka, Moscow (1984).

    MATH  Google Scholar 

  6. M. R. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  7. M. A. Lifshits, “Gaussian random processes,” Teor. Ver. Mat. Statist., Kiev (1995).

  8. J. Galambos, “On the development of the mathematical theory of extrema for the last 50 years,” Teor. Ver. Primen., 39, No. 2, 272–293 (1994).

    MATH  MathSciNet  Google Scholar 

  9. V. A. Dmitrovskii, “Estimates for the distribution of maximum of a Gaussian field,” in: Random Processes and Fields [in Russian], Moscow University, Moscow (1979), pp. 22–31.

    Google Scholar 

  10. D. Ylvisaker, “A note of the absence of tangencies in Gaussian sample paths,” Ann. Math. Statist., 39, 261–262 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Talagrand, “Sur l’integrabilité des vecteurs gaussiens,” Z. Wahrscheinlichkeitstheor. Verw. Geb., 68, No. 1, 1–8 (1984).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 9, pp. 1227–1235, September, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsak, I.K. Asymptotic properties of the norm of extremum values of normal random elements in the space C[0, 1]. Ukr Math J 50, 1405–1415 (1998). https://doi.org/10.1007/BF02525246

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525246

Keywords

Navigation