Abstract
For a function ƒ continuous on [0, 1] and satisfying the equalities \(f(0) = f\left( {\frac{1}{3}} \right) = f\left( {\frac{2}{3}} \right) = f(1) = 0,\) we prove that \(|f(x)| \le 2\omega _4 \left( {\frac{1}{4},f} \right),{\rm{ }}x \in [0,1],\) where ω4(t,ƒ) is the fourth modulus of smoothness of the function ƒ.
References
Yu. V. Kryakin, “On local approximation of functions by polynomials and quasipolynomials,” Izv. Ros. Akad. Nauk, Ser. Mai., No. 2 (1997).
B. Sendov, “On the constants of H. Whitney,” C. R. Acad. Bul. Sci., 35, No. 4, 431–434 (1982).
V. V. Zhuk and G. I. Natanson, “On the theory of cubic periodic splines over equidistant knots,” Vestn. Leningr. Univ., Mat. Astron., No. 1, 5–11 (1984).
B. Sendov, “On the theorem and constants of Whitney,” Constr. Approxim., No. 3, 1–11 (1987).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 5, pp. 732–734, May, 1998.
Rights and permissions
About this article
Cite this article
Danilenko, I.G. On the Sendov problem on the Whitney interpolation constant. Ukr Math J 50, 831–833 (1998). https://doi.org/10.1007/BF02514335
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02514335