Abstract
We obtain an approximate functional equation for ζ m (z), m ∈ N.
Similar content being viewed by others
References
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function [Russian translation], Inostrannaya Literatura, Moscow (1953).
A. O. Gel’fond, “On certain functional equations that are consequences of Riemann-type equations,” Izv. Akad. Nauk SSSR, Ser. Mat., 24, No. 4, 469–474 (1960).
K. Chandrasekharan and R. Narasimhan, “The approximate functional equation for a class of zeta-functions,” Math. Ann., 152, No. 1, 30–64 (1963).
A. F. Lavrik, “On functional equations for Dirichlet functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 31, No. 2, 431–442 (1967).
S. A. Gritsenko, “An approximate functional equation for the product of two Dirichlet L-functions,” Izv. Ros. Akad. Nauk, Ser. Mat., 58, No. 5, 26–52 (1994).
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, New York (1986).
S. M. Voronin and A. A. Karatsuba, Riemann Zeta Functions [in Russian], Fizmatgiz, Moscow (1994).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 4, pp. 540–551, April, 1998.
Rights and permissions
About this article
Cite this article
Mel’nik, V.I. Approximate representation for a natural power of the Riemann ζ-function. Ukr Math J 50, 612–625 (1998). https://doi.org/10.1007/BF02487393
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02487393