Abstract
Stochastic dynamics corresponding to the Boltzmann hierarchy is constructed. The Liouville-Itô equations are obtained, from which we derive the Boltzmann hierarchy regarded as an abstract evolution equation. We construct the semigroup of evolution operators and prove the existence of solutions of the Boltzmann hierarchy in the space of sequences of integrable and bounded functions. On the basis of these results, we prove the existence of global solutions of the Boltzmann equation and the existence of the Boltzmann-Grad limit for an arbitrary time interval.
Similar content being viewed by others
References
N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946); see also: N. N. Bogolyubov, Selected Works [in Russian], Vol. 2, Naukova Dumka, Kiev (1970), pp. 99–196.
C. Cercignani, “The Grad limit for a system of soft spheres,” Commun. Pure Appl. Math., 36, 479–494 (1983).
O. E. Lanford, “Time evolution of large classical systems,” Lect. Notes Phys., 38 (1975).
V. I. Gerasimenko and D. Ya. Petrina, “Existence of the Boltzmann-Grad limit for infinite systems of hard spheres,” Teor. Mat. Fiz., 83, 92–114 (1990).
D. Ya. Petrina and V. I. Gerasimenko, “Mathematical problems of statistical mechanics of hard-sphere-particle systems,” Usp. Mat. Nauk, 45, 192–214 (1990).
D. Ya. Petrina and V. I. Gerasimenko, “Evolution of states of infinite systems in classical statistical mechanics,” Sov. Sci. Rev. Ser. C Math. Phys., 5, 1–60 (1984).
D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, “Thermodynamic limit for solutions of Bogoliubov’s equations,” Sov. Sci. Rev. Ser. C Math. Phys., 7, 280–335 (1987).
D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems, Gordon and Breach, New York (1989).
H. Tanaka, “Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,” Z. Warscheinlichkeitstheor. Verw. Geb., 46, 67–105 (1978).
A. S. Sznitman, “Equations de type de Boltzmann, spatialement homogenes,” Z. Warscheinlichkeitstheor. Verw. Geb., 66, 559–592 (1984).
A. A. Arsen’ev, “On the approximation of a solution of the Boltzmann equation by a solution of Itô stochastic differential equations,” Zh. Vychisl. Mat. Mat. Fiz., 27, 400–410 (1987).
A. A. Arsen’ev, “Approximation of the Boltzmann equation by stochastic equations,” Zh. Vychisl Mat. Mat. Fiz., 28, 560–567 (1988).
A. V. Skorokhod, Stochastic Equations for Complex Systems [in Russian], Nauka, Moscow (1983).
M. Lachowicz and M. Pulvirenti, “A stochastic particle system modeling the Euler equation,” Arch. Rat. Mech. Anal., 109, 81–93 (1990).
S. Caprino, A. De Masi, E. Presutti, and M. Pulvirenti, “A stochastic particle system modeling the Carleman equation,” J. Statist. Phys., 55, 625–638 (1989).
M. Lachowicz, “A system of stochastic differential equations modeling the Euler and the Navier-Stokes hydrodynamic equations,” Jpn. J. Industr. Appl. Math., 10, 109–131 (1993).
S. Albeverio, S. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer, New York-Berlin (1988).
V. D. Koshmanenko, Singular Quadratic Forms in the Theory of Perturbations of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1993).
I. M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions [in Russian], Nauka, Moscow (1962).
S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).
C. Cercignani, V. I. Gerasimenko, and D. Ya. Petrina, Many-Particle Dynamics and Kinetic Equations, Kluwer, Dordrecht (1997).
C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York (1997).
N. N. Bogolyubov and N. N. Bogolyubov, Jr., Introduction to Statistical Mechanics [in Russian], Nauka, Moscow (1984).
C. Cercignani, “On the master equation in the space in homogeneous case,” in: G. Pichon (editor), Theories Cinetiques Classiques et Relativistes, Colloq. Int. C. N. R. S. (1975), pp. 209–221.
J. R. Dorfman and M. H. Ernst, “Hard-sphere binary-collision operators,” J. Stat. Phys., 57, 581–593 (1989).
R. J. Di Perna and P. L. Lions, “Global solutions of Boltzmann’s equation and the entropy inequality,” Arch. Rat. Mech. Anal., 47–55 (1991).
R. J. Di Perna and P. L. Lions, “On the Cauchy problem for Boltzmann equations: Global existence and weak stability,” Ann. Math., 130, 321–366 (1989).
Author information
Authors and Affiliations
Additional information
Published in Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 3, pp. 372–387, March, 1998.
Rights and permissions
About this article
Cite this article
Petrina, D.Y., Petrina, K.D. Stochastic dynamics and Boltzmann hierarchy. II. Ukr Math J 50, 425–441 (1998). https://doi.org/10.1007/BF02528807
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02528807