Skip to main content
Log in

Hierarchy of the matrix Burgers equations and integrable reductions in the Davey-Stewartson system

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We investigate integrable reductions in the Davey-Stewartson model and introduce the hierarchy of the matrix Burgers equations. By using the method of nonlocal reductions in linear problems associated with the hierarchy of the Davey-Stewartson-II equations, we establish a nontrivial relation between these equations and a system of matrix Burgers equations. In an explicit form, we present reductions of the Davey-Stewartson-II model that admit linearization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Davey and K. Stewartson, “On three-dimensional packets of surface waves,” Proc. Roy. Soc. London A, 338, 101–110 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  2. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. Inverse Scattering Transform [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  3. G. L. Lam, Jr., Elements of Soliton Theory, Wiley, New York (1980).

    Google Scholar 

  4. F. Calogero and A. Degasperis, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations, Vol. 1, North-Holland, Amsterdam (1982).

    MATH  Google Scholar 

  5. L. A. Takhtadzhyan and L. D. Fadeev, Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  6. M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering Transform, Society of Industrial and Applied Mathematics, Philadelphia (1981).

    MATH  Google Scholar 

  7. Yu. A. Mitropol’skii, N. N. Bogolyubov, Jr., A. K. Prikarpatskii, and V. G. Samoilenko. Integrable Dynamical Systems. Spectral and Differential-Geometric Aspects [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  8. A. C. Newell, Solitons in Mathematics and Physics, Society of Industrial and Applied Mathematics, Philadelphia (1985).

    Google Scholar 

  9. A. K. Prikarpatskii and I. V. Mikityuk, Algebraic Aspects of Integrability of Dynamical Systems on Manifolds [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  10. M. J. Ablowitz and R. Haberman, “Nonlinear evolution equations—two and three dimensions,” Phys. Rev. Lett., 35(18), 1185–1189 (1975).

    Article  MathSciNet  Google Scholar 

  11. A. S. Fokas and M. J. Ablowitz, “The inverse scattering transform for multidimensional 2+1 problems,” in: K. B. Wolf (editor), Nonlinear Phenomena, Lect. Notes Phys., No. 189, Springer, Berlin (1984).

    Google Scholar 

  12. A. S. Fokas and M. J. Ablowitz, “On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane,” J. Math. Phys., 25, No. 8, 2494–2505 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  13. P. A. Clarcson and S. Hood, “New symmetry reductions and exact solutions of the Davey-Stewartson system. I. Reductions to ordinary differential equations,” J. Math. Phys., 35, No. 1, 225–283 (1994).

    Google Scholar 

  14. R. E. Kates and D. J. Kaup, “Two-dimensional nonlinear Schrödinger equations and their properties,” Phys. D, 75, 458–470 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  15. B. K. Shivamoggi and D. K. Rollons, “The Painleve formulations and exact solutions of the nonlinear evolution equations for modulated gravity wave trains,” J. Math. Phys., 35, No. 9, 4779–4798 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  16. L. P. Nizhnik, Nonstationary Inverse Scattering Transform [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  17. L. P. Nizhnik and M. D. Pochinaiko, “Integration of a nonlinear Schrödinger equation two-dimensional in space variables by the inverse scattering transform,” Funkts. Anal., 16, Issue 1, 80–82 (1982).

    MathSciNet  Google Scholar 

  18. R. Beals and R. R. Coifman, “The D-Bar approach to inverse scattering and nonlinear evolutions,” Phys. D, 18, 242–249 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  19. L. A. Dickey, “Soliton equations and Hamiltonian systems,” Adv. Ser. Math. Phys., 12 (1991).

  20. B. Konopelchenko, Yu. Sidorenko, and W Strammp, “(1+1)-Dimensional integrable systems as symmetry constrains of (2+1)-dimensional systems,” Phys. Lett. A, 157, 17–21 (1991).

    Article  MathSciNet  Google Scholar 

  21. Yu. Sidorenko and W. Strammp, “Symmetry constraints of the KP-hierarchy,” Inverse Probl., 7, L-37–L-43 (1991).

    Article  Google Scholar 

  22. Yu. Sidorenko and W. Strammp, “Multicomponent integrable reductions in Kadomtsev-Petviashvili hierarchy,” J. Math. Phys., 34, No. 4, 1429–1446 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  23. W. Oevel, Yu. Sidorenko, and W. Strammp, “Hamiltonian structures of the Melnicov system and its reductions,” Inverse Probl., 9, 737–747 (1993).

    Article  MATH  Google Scholar 

  24. W. Oevel and W. Strammp, “Constrained KP hierarchy and bi-Hamiltonian structures,” Commun. Math. Phys., 157, 51–81 (1993).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 2, pp. 252–263, February, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilenko, V.G., Sidorenko, Y.M. Hierarchy of the matrix Burgers equations and integrable reductions in the Davey-Stewartson system. Ukr Math J 50, 287–301 (1998). https://doi.org/10.1007/BF02513452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513452

Keywords

Navigation