Abstract
We describe the history of the development of the numerical-analytic method suggested by Samoilenko in 1965 and analyze the relation of this method to other investigations.
Similar content being viewed by others
References
A. M. Samoilenko, “Numerical-analytic method for the investigation of periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh., 17, No. 4, 82–93 (1965).
A. M. Samoilenko, “Numerical-analytic method for the investigation of periodic systems of ordinary differential equations. II,” Ukr. Mat. Zh., 18, No. 2, 50–59 (1966).
A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Method for the Investigation of Periodic Solutions, Vyshcha Shkola, Kiev (1976).
A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Methods for the Investigation of Solutions of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1985).
A. M. Samoilenko and M. I. Rontó, Numerical-Analytic Methods in the Theory of Boundary-Value Problems for Ordinary Differential Equations [in Russian], Naukova Dumka, Kiev (1992).
A. M. Samoilenko and V. N. Laptinskii, “On estimates of periodic solutions of differential equations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 30–32 (1982).
M. G. Krein and M. A. Rutman, “Linear operators under the action of which a cone in a Banach space is invariant,” Usp. Mat. Nauk, 3, Issue 1 (23), 3–95 (1948). English translation: AMS. Translation No. 26, Am. Math. Soc, Providence (1950).
N. A. Evkhuta and P. P. Zabreiko. “On the Samoilenko method for finding periodic solutions of quasilinear differential equations in a Banach space,” Ukr. Mat. Zh., 37, No. 2, 162–168 (1985).
N. A. Evkhuta and P. P. Zabreiko, “On the convergence of the Samoilenko method of successive approximations for finding periodic solutions,” Dokl. Akad. Nauk Bel. SSR. 29, No. 1, 15–18 (1985).
E. P. Trofimchuk, “Integral operators of the method of periodic successive approximations,” Mat. Fiz Nelin. Mekh., 13, 31–36 (1990).
M. Kwapisz, “Some remarks on an integral equation arising in applications of numerical-analytic method of solving of boundaryvalue problems,” Ukr. Mat. Zh., 44, No. 1, 128–132 (1992).
M. I. Rontó and J. Mészáros, “Some remarks on the convergence analysis of the numerical-analytic method based on successive approximations,” Ukr. Mat. Zh., 48, No. 1, 90–95 (1996).
M. I. Rontó, A. N. Rontó, and S I. Trofimchuk, Numerical-Analytic Method for Differential and Difference Equations in Partially Ordered Banach Spaces and Some Applications. Preprint No. 96-02, Institute of Mathematics, University of Miskolc, Miskolc (1996).
M. I. Rontó and S. I. Trofimchuk, Numerical-Analytic Method for Nonlinear Differential Equations, Preprint No. 96-01, Institute of Mathematics, University of Miskolc, Miskolc (1996).
J. Hale, Oscillations in Nonlinear Systems [Russian translation], Mir, Moscow (1966).
R. Conti, “Recent trends in the theory of boundary-value problems for ordinary differential equations,” Boll. Unione Mat. Ital., 22, No. 2, 135–178 (1967).
J. Mawhin, “Recent trends in boundary-value problems,” Abh. Wiss. DDR Abt. Math. Naturwiss. Techn., 4, 51–70 (1977).
J. Mawhin, Topological Degree Methods in Nonlinear Boundary-Value Problems, CBMS Regional Conference Series in Mathematics, Am. Math. Soc., Providence (1979).
A. Capietto, J. Mawhin, and F. Zanolin, “A continuation approach to superlinear periodic boundary-value problems,” J. Different. Equat., 88, 347–395 (1990).
A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, Generalized Inverse Operators and Noether Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1995).
I. T. Kiguradze, “Boundary-value problems for systems of ordinary differential equations,” in: Contemporary Problems of Mathematics. New Achievements [in Russian], Nauka, Moscow (1987), pp. 3–103.
M. Farkas, Periodic Motions, Springer, New York (1994).
N. Rouche and J. Mawhin, Ordinary Differential Equations. Stability and Periodic Solutions, Pitman, Boston (1980).
L. Cesari and J. Hale, “A new sufficient condition for periodic solutions of weakly nonlinear differential systems,” Proc. Am. Math. Soc., 8, 757–764 (1957).
L. Cesari, “Functional analysis and periodic solutions of nonlinear differential equations,” in: Contributions to Differential Equations, Vol. 1, Wiley, New York (1963), pp. 149–187.
L. Cesari, “Functional analysis, nonlinear differential equations, and the alternative method,” in: Nonlinear Functional Analysis and Applications, Dekker, New York (1976), pp. 1–197.
L. Cesari. Asymptotic Behavior and Stability Problems in Ordinary Differential Equations [Russian translation], Mir, Moscow (1964).
M. Kwapisz, “On modification of the integral equation of Samoilenko’s numerical-analytic method,” Math. Nachr., 157, 125–135 (1992).
H. W. Knobloch, “Remarks on a paper of L. Cesari on functional analysis and nonlinear differential equations,” Michigan Math. J., 16, No. 4, 417–430 (1963)
J. Mawhin, “Degré topologique et solutions périodique des systéms différentiels non linéares,” Bull. Soc. Roy Sci. Liége, 38, 308–398 (1969).
R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, New York (1977).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 1, pp. 102–117, January, 1998.
Rights and permissions
About this article
Cite this article
Rontó, M.I., Samoilenko, A.M. & Trofimchuk, S.I. The theory of the numerical-analytic method: Achievements and new trends of development. I. Ukr Math J 50, 116–135 (1998). https://doi.org/10.1007/BF02514693
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02514693