Skip to main content
Log in

Singularly perturbed stochastic systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Problems of singular perturbation of reducible invertible operators are classified and their applications to the analysis of stochastic Markov systems represented by random evolutions are considered. The phase merging, averaging, and diffusion approximation schemes are discussed for dynamical systems with rapid Markov switchings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Anisimov, “Switching processes,” Cybernetics, 4, 111–115 (1977).

    MathSciNet  Google Scholar 

  2. V. V. Anisimov, Random Processes with Discrete Component. Limit Theorems [in Russian], Vyshcha Shkola (1978).

  3. M. Kac, “Some stochastic problems in physics and mathematics,” Lect. Pure Appl. Sci., 2 (1956).

  4. R. J. Griego and R. Hersh, “Random evolutions, Markov chains and systems of partial differential equations”, Proc. Nat. Acad. Sci. USA, 62, 305–308 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. J. Griego and R. Hersh, “Theory of random evolutions with applications to partial differential equations,” Trans. Am. Math. Soc., 156, 405–418 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Hersh, “Random evolutions: a survey of results and problems,” Rocky Mt. J. Math., 4, 443–477 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  7. T. G. Kurtz, “A limit theorem for perturbed operator semigroups with applications to random evolutions,” J. Funct. Anal., 12, 55–67 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  8. M. A. Pinsky, “Multiplicative operator functions and their asymptotic properties,” Adv. Prov., 3, 1–100 (19??).

    Google Scholar 

  9. G. Papanicolaou, D. Strook, and S. Varadhan, “Martingale approach to some limit theorems,” Duke Univ. Math. Ser. 3

  10. R. Kertz, “Limit theorems for semi-groups with perturbed generators, with applications to multiscaled random evolutions,” J. Funct. Anal., 27, 215–233 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Ethier and T. Kurtz, Markov Processes: Characterization and Convergence, Wiley (1986).

  12. R. Hersh, “The Birth of Random Evolution,” in: Proc. Int. School, TV-VSP, Moscow-Utrecht (1993).

  13. J. Watkins, “Limit theorems for stationary random evolutions,” Stoch. Pr. Appl., 19, 189–224 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  14. G. L. Blankenship and G. C. Papanicolaou, “Stability and control of stochastic systems with wide band noise disturbances,” J. Appl. Math., 34, 437–476 (1978).

    MATH  MathSciNet  Google Scholar 

  15. H. J. Kushner, Approximation and Weak Convergence Methods for Random Processes, MIT Press (1984).

  16. V. S. Korolyuk and A. F. Turbin, Mathematical Foundations of the State. Lumping of Large System, Kluwer (1993).

  17. V. S. Korolyuk and V. V. Korolyuk, Stochastick Models of Systems, Kluwer (1997).

  18. V. S. Korolyuk and A. V. Swishchuk, Evolution of Systems in Random Media, CRC Press (1995).

  19. S. G. Krein, Linear Equations in Banach Spaces [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  20. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Moscow, Nauka (1974).

    MATH  Google Scholar 

  21. Yu. A. Mitropol’skii and A. M. Samoilenko, Mathematical Problems of Nonlinear Mechanics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987).

    Google Scholar 

  22. I. I. Gikhman, Differential Equations with Random Coefficients, Akad. Nauk Ukraine, No. MR 31 (6037), Kiev (1964).

  23. E. F. Tsar'kov, “Average and stability of linear equations with small diffusion coefficients,” in: Proceedings of the VI USSR-Japan Symposium, 390–396 (1992).

  24. I. Ya Kac and N. N. Krasovskii, “About stability of systems with random parameters” J. Appl. Math. Mech., 27, No. 5, 809–823 (1960).

    Google Scholar 

  25. Khasminskii, “Limit theorems for solutions with random right-hand side,” Theor. Prob. Appl., 11, 390–406 (1966).

    Article  Google Scholar 

  26. R. Khasminskii, Stochastic Stability of Differential Equations, Simjthoff, and Nordhoff (1980).

  27. A. V. Skorokhod, “Asymptotic Methods of the Theory of Stochastic Differential Equations”, AMS Transl. Math. Monogr., 78 (1989).

  28. A. V. Skorokhod, “Dynamical systems under rapid random disturbances,” Ukr. Mat. Zh., 23, 3–21 (1991).

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Published in Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 1, pp. 25–34, January, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korolyuk, V.S. Singularly perturbed stochastic systems. Ukr Math J 49, 25–35 (1997). https://doi.org/10.1007/BF02486614

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486614

Keywords

Navigation