Abstract
We give an extensive generalization of the white-noise analysis (in the Gaussian and non-Gaussian case) in which the role of translation operators is played by a fixed family of generalized translation operators.
Similar content being viewed by others
References
T. Hida, Brownian Motion, Springer-Verlag, New York-Heidelberg-Berlin (1980).
T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit, White Noise. An Infinite Dimensional Calculus, Kluwer, Dordrecht-Boston-London (1993).
Yu. M. Berezansky, Self-Adjoint Operators in the Spaces of Functions of Infinitely Many Variables [in Russian], Naukova Dumka, Kiev (1978). English translation: AMS, Providence (1986).
Yu. M. Berezansky and Yu. G. Kondrat’ev, Spectral Methods in Infinite-Dimensional Analysis [in Russian], Naukova Dumka, Kiev (1988), English translation: Kluwer, Dordrecht-Boston-London (1995).
Y. Itô, “Generalized Poisson functionals,” Probab. Theory Related Fields, 77, 1–28 (1988).
Y. Itô and I. Kubo, “Calculus on Gaussian and Poisson white noises,” Nagoya Math. J., 111, 41–84 (1988).
Yu. M. Berezansky, “Spectral approach to white noise analysis,” in: Proceedings of Symposium “Dynamics of Complex and Irregular Systems,” Bielefeld, December, 16–20, 1991; Bielefeld Encounters in Mathematics and Physics VIII, World Scientific, Singapore-New Jersey-London-Hong Kong (1993), pp. 131–140.
Yu. M. Berezansky, V. O. Livinsky, and E. W. Lytvynov, “A generalization of Gaussian white noise analysis,” Methods Funct. Analysis Topology, 1, No. 1, 28–55 (1995).
E. W. Lytvynov, “Multiple Wiener integrals and non-Gaussian white noise analysis: a Jacobi field approach,” Methods Funct. Analysis Topology, 1, No. 1, 61–85 (1995).
S. Albeverio, Yu. L. Daletsky, Yu. G. Kondratiev, and L. Streit, Non-Gaussian Infinite-Dimensional Analysis, BiBoS-Preprint, Bielefeld, 1994; J. Funct. Anal., 138, No. 2, 311–350 (1996).
Yu. G. Kondratiev, L. Streit, W. Westerkamp, and J.-A. Yan, Generalized Functions in Infinite-Dimensional Analysis, IIAS Preprint (1995).
G. F. Us, “Dual Appel systems in Poissonian anlysis,” Methods Funct. Analysis Topology, 1, No. 1, 93–108 (1995).
Yu. L. Daletskii, “Biorthogonal analog of Hermitian polynomials and inversion of Fourier transformations with respect to non-Gaussian measure,” Funkts. Anal. Prilozh., 25, No. 2, 68–70 (1991).
Yu. M. Berezansky and Yu. G. Kondrat’ev, “Non-Gaussian analysis and hypergroups,” Funkts. Anal. Prilozh., 29, No. 3, 51–55 (1995).
Yu. M. Berezansky, “A connection between the theory of hypergroups and white noise analysis,” Repts. Math. Phys., 36, No. 2/3, 215–234 (1995).
Yu. M. Berezansky, “A generalization of white noise analysis by means of the theory of hypergroups,” Repts. Math. Phys., 38, No. 3, 289–300 (1996).
Yu. M. Berezansky and Yu. G. Kondratiev, “Biorthogonal systems in hypergroups: an extension of non-Gaussian analysis,” Methods Funct. Analysis Topology, 2, No. 2, 1–50 (1996).
Yu. M. Berezansky and A. A. Kalyuzhnyi, Harmonic Analysis in Hypercomplex Systems [in Russian], Naukova Dumka, Kiev (1992). English translation: Kluwer, Dordrecht-Boston-London (1997).
W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter, Berlin-New York (1995).
B. M. Levitan, Theory of Generalized Translation Operators [in Russian], Nauka, Moscow (1973).
Yu. M. Berezansky, “Infinite-dimensional non-Gaussian analysis and generalized translation operators,” Funkts. Anal. Prilozh., 30, No. 4, 61–65 (1996).
Yu. M. Berezansky, V. O. Livinsky and E. V. Lytvynov, “Spectral approach to the white noise analysis,” Ukr. Mat. Zh., 46, No. 3, 177–197 (1994).
L. Nachbin, Topology on Spaces of Holomorphic Mappings, Springer-Verlag, Berlin-Heidelberg-New York (1969).
Additional information
Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 3, pp. 364–409, March, 1997.
Rights and permissions
About this article
Cite this article
Berezansky, Y.M. Infinite-dimensional analysis related to generalized translation operators. Ukr Math J 49, 403–450 (1997). https://doi.org/10.1007/BF02487241
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02487241