Skip to main content
Log in

Admissible vector fields and related diffusions on infinite-dimensional manifolds

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

A variation on the notion of “admissibility” for vector fields on certain infinite-dimensional manifolds with measures on them is described. It leads to the construction of associated diffusions and Markov semigroups on these manifolds via Dirichlet forms. Some classes of concrete examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. L. Dalecky and Ya. I. Shnaiderman, “Diffusions and quasi-invariant measures on infinite-dimensional Lie groups,” Funct. Anal. Its Appl., 3, 88–90 (1969).

    Google Scholar 

  2. Yu. L. Dalecky and S. V. Fomin, Measures and Differential Equations in Infinite-dimensional Spaces, Kluwer, Dordrecht (1991).

    Google Scholar 

  3. O. G. Smolyanov and H. V. Weizsacket, “Differentiable families of measures,” J. Funct. Anal., 118, 454–476 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Gross, “Potential theory on Hilbert spaces,” J. Funct. Anal., 1, 123–181 (1967).

    Article  MATH  Google Scholar 

  5. P. Malliavin, “Stochastic calculus of variation and hypoelliptic operators,” in: Proc. Inst. Symp. S. D. E. Kyoto (1976), Wiley, New York (1978), pp. 195–264.

    Google Scholar 

  6. B. Driver, “A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold,” J. Funct. Anal., 100, 272–377 (1992).

    Article  MathSciNet  Google Scholar 

  7. K. D. Elworthy and Z. M. Ma, Vector Fields on Mapping Spaces and Related Dirichlet Forms and Diffusions, Preprint No. 24, Warwick (1996) (to appear in Osaka J. Math).

  8. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin (1994).

    MATH  Google Scholar 

  9. Z. M. Ma and M. Röckner, Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer-Verlag, Berlin (1992).

    Google Scholar 

  10. K. D. Elworthy, Y. LeJan, and X. M. Li, “Integration by parts formulae for degenerate diffusion measures on path spaces and diffeomorphism groups”, C. R. A. S., 323, 921–926 (1996).

    MATH  MathSciNet  Google Scholar 

  11. K. D. Elworthy, Y. LeJan, and X. M. Li, “Concerning the geometry of stochastic differential equations and stochastic flows,” in: K. D. Elworthy et al. (eds.), Proceedings of Taniguchi Symposium (1994), World Scientific Press, Singapore (1997), p. 25.

    Google Scholar 

  12. B. Driver and M. Röckner, “Construction of diffusions on path and loop spaces of compact Riemannian manifolds”, C. R. A. S., 315, 603–608 (1992).

    MATH  Google Scholar 

  13. C. J. Atkin, “Bounded complete Finsler structures. 1,” Studia Math., 62, 219–228 (1978).

    MATH  MathSciNet  Google Scholar 

  14. R. S. Palais, “Lustemik-Schnirelman theory on Banach manifolds,” Topology, 5, 115–132 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Caratheodory, “Untersuchungen über die Grundlagen der Thermodynamik,” Math. Ann., 67, 355–386 (1909).

    Article  MathSciNet  Google Scholar 

  16. H. Eliasson, “Geometry of manifolds of maps,” J. Diff. Geom., 1, 169–194 (1966).

    MathSciNet  Google Scholar 

  17. J. P. Penot, “Varietés differentiables d’applications et de chemins,” C. R. Acad. Sci. Paris Ser. A-B, 264, A1066-A1068 (1967).

    MathSciNet  Google Scholar 

  18. N. Krikorian, “Differentiable struetures on function spaces,” Trans. Amer. Math. Soc., 17, 67–82 (1972).

    Article  MathSciNet  Google Scholar 

  19. M. Röckner and M. Shmuland, “Quasi-regular Dirichlet forms, examples and counterexamples,” Can. J. Math., 47, 165–200 (1995).

    MATH  Google Scholar 

  20. M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Amsterdam (1980).

    MATH  Google Scholar 

  21. K. D. Elworthy, Stochastic Differential Equations on Manifolds, Cambridge University Press, Cambridge (1982).

    MATH  Google Scholar 

  22. Li M. X., “Stochastic differential equations on noncompact manifolds: moment stability and its topological consequences,” Probab. Theory Related Fields, 100 (4), 417–428 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Fang, “Stochastic anticipative integrals on a Riemannian manifold,” J. Funct. Anal., 131, 228–253 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  24. K. D. Elworthy and X. M. Li, “A class of integration by parts formulae in stochastic analysis,” in: Itô’s Stochastic Calculus And Probability Theory, Springer-Verlag, Berlin (1996), pp. 15–30.

    Google Scholar 

  25. M. Röckner, Dirichlet Forms on Infinite-Dimensional “Manifold-Like” State Spaces: A Survey of Recent Results and Some Prospects for the Future, Preprint No. 96-026, SFB 343p.

  26. R. S. Palais, Foundations of Global Non-Linear Analysis, W. A. Benjamin (1968).

  27. P. Baxendale, “Gaussian measures on function spaces,” Am. J. Math., 98, 891–925 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  28. K. D. Elworthy, “Measures on infinite-dimensional manifolds,” in: Proc. Inter. Conference on Function. Integration and Its Appl., Oxford Univ. Press, Oxford (1975).

    Google Scholar 

  29. Z. Brzezniak and K. D. Elworthy, “Stochastic flows of diffeomorphisms,” in: Stochastic Analysis and Applications, World Scientific Press, Singapore (1996), pp. 107–138.

    Google Scholar 

  30. P. Baxendale, “Wiener processes on manifolds of maps,” Proc. Royal Soc. Edinburgh, 87 A, 127–152 (1980).

    MathSciNet  Google Scholar 

  31. E. Acosta, “On the essential self-adjointness of Dirichet operators on group-valued path spaces,” Proc. Am. Math. Soc., 122, 581–590 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Albeverio, S. Leandre, and M. Röckner, “Construction of a rotational invariant diffusion on the free loop space,” C. R. A. S., 316, 287–292 (1993).

    MATH  Google Scholar 

  33. S. Albeverio, Z. M. Ma, and M. Röckner, “Quasi-regular Dirichlet forms and Markov processes,” J. Funct. Anal., 111, 118–154 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 3, pp. 410–423, March. 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elworthy, K.D., Ma, ZM. Admissible vector fields and related diffusions on infinite-dimensional manifolds. Ukr Math J 49, 451–466 (1997). https://doi.org/10.1007/BF02487242

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487242

Keywords

Navigation