Skip to main content
Log in

Ideals and free Pairs in the semigroup β ℤ

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We prove that the equations ξ+x=mξ+y, x+ξ=y+mξ have no solutions in the semigroup β ℤ for every free ultrafilter ξ and every integer m∈0, 1. We study semigroups generated by the ultrafilters ξ, mξ. For left maximal idempotents, we prove a reduced hypothesis about elements of finite order in β ℤ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hindman, “Ultrafilters and combinatorial number theory,” Lect. Notes Math. 751, 49–184 (1979).

    MathSciNet  Google Scholar 

  2. I. V. Protasov, “Points of joint continuity of a semigroup of ultrafilters of an Abelian group,” Mat. Sb., 187, No. 2, 131–140 (1996).

    MathSciNet  Google Scholar 

  3. V. Bergelson, and N. Hindman, “Nonmetrizable topological dynamics and Ramsey theory,” Trans. Am. Math. Soc., 320, No. 1, 293–320 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Hindman, “The ideal structure of the space of K-uniform ultrafilters on a discrete semigroup,” Rocky Mountain J. Math., 16, No. 4, 685–701 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Baker, N. Hindman, and J. Pym, “Elements of finite order in Stone-Čech compactifications,” Proc. Edinburgh Math. Soc., 36, No. 1, 49–54 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  6. E. G. Zelenyuk, Finite Groups in ßN Are Trivial [in Russian], Preprint No 96.3, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1996).

    Google Scholar 

  7. W. Ruppert, “Compact semitopological semigroups: an intrinsic theory,” Lect. Notes Math. 1079, 1–260 (1984).

    Article  MathSciNet  Google Scholar 

  8. E. G. Zelenyuk, and I. V. Protasov, “Topology on Abelian groups,” Izv. Akad Nauk SSSR, Ser. Mat., 54, No. 5, 1090–1107 (1990).

    Google Scholar 

  9. T. Budak, N. Isik, and J. Pym, “Subsemigroups of Stone-Čech compactifications,” Math. Proc. Cambridge Phil. Soc., 116 99–118 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  10. I. V. Protasov, “Filters and topologies on semigroups,” Mat. Stud. Pratsi Lviv. Mat. Tovar., Issue 3, 15–28 (1994).

    MATH  MathSciNet  Google Scholar 

  11. D. Strauss, “N* does not contain an algebraic and topological copy of ßN,” London. Math. Soc., 46, No. 3, 463–470 (1992).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Kiev University, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 4, pp. 573–580, April, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protasov, I.V. Ideals and free Pairs in the semigroup β ℤ. Ukr Math J 49, 635–642 (1997). https://doi.org/10.1007/BF02487327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487327

Keywords