Abstract
The purpose of this paper is to investigate an operator version of Tikhonov regularization for a class of ill-posed variational inequalities under arbitrary perturbation operators. Aspects of convergence rate and finite-dimensional approximations are considered. An example in the theory of generalized eigenvectors is given for illustration.
Similar content being viewed by others
References
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Wunod Gauthier-Villars, Paris (1969).
M. Sibony, “Sur l’approximation d’équation et inéquations aux derivées partieles nonlinéaires de type monotone,” J. Math. Anal. Appl., 34, 502–564 (1992).
M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations (in Russian), Nauka, Moscow (1972).
G. Bruckner, “On the speed of c 0-sequences in connection with a lemma of Toeplitz,” Abh. Akad. Wiss. DDR, Nonlinear Anal.: Theory Appl., No. 2, 53–76 (1981).
K. Kluge, “Optimal control with minimum problems and variational inequalities,” Lect. Notes Comput. Sci., 27, 377–382 (1975).
K. Kluge, “Approximation methods for nonlinear problems with constrain in form of variational inequalities,” Banach Center Publ., 1, 131–138 (1976).
I. P. Ryazantseva, “Operator method for regularization of problems of optimal programming with monotone maps,” Sib. Mat. Zh., 24, No. 6, 214 (1983).
I. J. Alber, “On the solution of nonlinear equations involving monotone operators in Banach spaces,” Sib. Mat. Zh., 26, 3–11 (1975).
I. P. Ryazantseva, “On the choice of a regularization parameter for equations under monotone perturbations,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 8, 39–43 (1981).
O. A. Liskovets, “Regularization for problems involving discontinuous monotone operators under arbitrary perturbations,” Dokl. Akad. Nauk SSSR, 272, No. 1, 30–34 (1983).
I. J. Alber and A. I. Notik, “Geometrical properties of Banach spaces and approximate methods for the solution of nonlinear operator equations,” Dokl. Akad. Nauk SSSR, 276, 1033–1037 (1984).
A. Neubauer, “An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates,” SIAM J. Numer. Math., 25, 1313–1326 (1988).
H. W. Engl and C. W. Groetsch, “Projection-regularization for linear operator equations of the first kind,” in: Special Programs on Inverse Problems. Proc. Center Math. Anal. Australian Nat. Univ. (1988), pp. 17–31.
H. W. Engl, K. Kunisch, and A. Neubauer, “Convergence rates for Tikhonov regularization of nonlinear ill-posed problems,” Inverse Probl., 5, 523–540 (1989).
Additional information
Institute of Information Technology, Vietnam. Published in Ukrainskii Matematicheskii Zhunal, Vol. 49, No. 5, pp. 629–637, May, 1997.
Rights and permissions
About this article
Cite this article
Buong, N. Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities. Ukr Math J 49, 697–707 (1997). https://doi.org/10.1007/BF02486451
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02486451