Abstract
We study groups in which the intersection of normalizers of all noncyclic subgroups (noncyclic norm) has a finite index. We prove that if the noncyclic norm of an infinite noncyclic group is locally graded and has a finite index in the group, then this group is central-by-finite and its noncyclic norm is a Dedekind group.
Similar content being viewed by others
References
R. Baer, “Der Kern, eine charakteristische Unter-gruppe,” Comp. Math., 1, 254–283 (1934).
W. Kappe, “Die A-norm einer gruppe,” Ill. J. Math., 5, No. 2, 187–197 (1961).
A. G. Kurosh, Theory of Groups [in Russian], Nauka, Moscow (1967).
F. N. Liman, “On infinite groups whose noncyclic norm has a finite index,” in: Proceedings of the III International Conference on Algebra (in memory of M. I. Kargapolov) [in Russian], Krasnoyarsk (1993), p. 207.
A. Yu. Ol’shanskii, “An infinite group with subgroups of prime orders,” Izv. Akad. Nauk SSSR, Ser. Mat., 44, No. 2, 309–321 (1980).
F. N. Liman, “Groups with invariant noncyclic subgroups,” Dokl. Akad. Nauk Ukr. SSR, No. 12, 1073–1075 (1967).
F. N. Liman, “2-groups with invariant noncyclic subgroups,” Mat. Zametki, 4, No. 1, 75–83 (1968).
S. D. Brodskii, “On some Chernikov-Kurosh classes,” in: Proceedings of the XVI All-Union Algebraic Conference [in Russian], Part 2, Leningrad (1981), p. 19.
J. L. Alperin, “Groups with finitely many automorphisms,” Pacif. J. Math., 12, 1–5 (1962).
B. H. Newman, “Groups with finite classes of conjugate subgroups,” Math. Z., 63, No. 1, 76–96 (1955).
F. N. Liman, “Infinite p-groups that contain exactly p 2 solutions of the equation x p=1,” Mat. Zametki, 20, No. 1, 11–18 (1976).
Additional information
Sumy Pedagogical Institute, Sumy. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 5, pp. 678–684, May, 1997.
Rights and permissions
About this article
Cite this article
Liman, F.N. On infinite groups whose noncyclic norm has a finite index. Ukr Math J 49, 755–762 (1997). https://doi.org/10.1007/BF02486456
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02486456