Abstract
For a nonlinear Klein-Gordon equation, we construct the first approximation of an asymptotic solution by using Ateb-functions. The resonance and nonresonance cases are considered.
References
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London (1984).
Yu. A. Mitropol’skii, “On the construction of an asymptotic solution of the perturbed Klein-Gordon equation,” Ukr. Mat. Zh., 47, No. 9, 1209–1217 (1995).
P. M. Senik, “Inversion of an incomplete Beta-function,” Ukr. Mat. Zh., 21, No. 3, 325–333 (1969).
N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).
G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).
V. G. Kolomiets and T.-N. M. Tsikailo, Asymptotic Methods and Periodic Ateb-Functions in Some Nonlinear Problems in the Theory of Random Oscillations [in Russian], Preprint No. 87.57, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987).
P. M. Senik and B. I. Sokil, “On an oscillatory process in a mechanical oscillator,” Visn. L’viv. Politekh. Inst., No. 121, 90–94 (1978).
Additional information
“L’vivs’ka Politeknika” University, Lviv. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 6, pp. 872–877, June, 1997.
Rights and permissions
About this article
Cite this article
Sokil, B.I. On the application of Ateb-functions to the construction of a solution of a nonlinear Klein-Gordon equation. Ukr Math J 49, 976–983 (1997). https://doi.org/10.1007/BF02513441
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02513441