Abstract
Let C 0 be a curve in a disk D={|z|<1} that is tangent to the circle at the point z=1, and let C θ be the result of rotation of this curve about the origin z=0 by an angle θ. We construct a bounded function biharmonic in D that has a zero normal derivative on the boundary and for which the limit along C θ does not exist for all θ, 0≤θ≤2π.
Similar content being viewed by others
References
P. Fatou, “Séries trigonométriques et séries de Taylor,” Acta Math., 30, 335–400 (1906).
J. E. Littlewood, “On a theorem of Fatou,” J. London Math. Soc., 2, 172–176 (1927).
A. Aikawa, “Harmonic functions having no tangential limits,” Proc. Am. Math. Soc., 108, No. 2, 457–464 (1990).
V. I. Gorbaichuk, “Fatou theorem on the limit behavior of derivatives in the class of biharmonic functions,” Ukr. Mat. Zh., 35, No. 5, 557–562 (1983).
A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).
C. Miranda, “Formule diemaggiorazione e teorema di esistenza per le funzioni biarmoniche in due variabili,” Ciorn. Math. Battaglini, 78, 97–118 (1949).
S. Agmon, “Maximum theorems for solutions of higher order elliptic equations,” Bull. Am. Math. Soc., 66, 77–80 (1960).
A.-M. Sändig, “Das Maximum Prinzip vom Miranda-Agmon-Typ für Lösungen der biharmonischen Gleichung in einem Rechteck,” Math. Nachr., 96, 49–51 (1980).
F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977).
Additional information
Volyn University, Lutsk. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 9, pp. 1171–1176, September, 1997.
Rights and permissions
About this article
Cite this article
Hembars'ka, S.B. Tangential limit values of a biharmonic poisson integral in a disk. Ukr Math J 49, 1317–1323 (1997). https://doi.org/10.1007/BF02487338
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02487338