Abstract
Finite volume grand canonical correlation functions of nonequilibrium systems of d-dimensional Brownian particles, interacting through a regular (long-range) pair potential with integrable first partial derivatives, are expressed in terms of the expectation values of a Gaussian random field. The initial correlation functions coincide with the Gibbs correlation functions corresponding to a more general pair long-range potential. Nonequilibrium Euclidean action is introduced, satisfying a thermodynamic stability property.
Similar content being viewed by others
References
S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys., 15, No. 1 (1943).
R. Z. Lang, Wahrscheinlichkeitstheor. Geb., 38, 55–72; 39, 277–299 (1977).
J. Fritz, J. Statist. Phys., 20, 351–359 (1979).
G. Lippner, “First order stochastic dynamics of one-dimensional infinite point systems,” Point Proc. Que. Probl., 277–289 (1981).
H. Rost, “Non-equilibrium solution of an infinite system of stochastic differential equations,” Lect. Notes Control Inf. Sci., 25 (1980).
J. Fritz, “Gradient dynamics of infinite point systems,” Ann. Probab., 15, No. 2, 478–514 (1987).
V. Skrypnik, “On generalized Gibbs-type solutions of the diffusion Bogolyubov-Streltsova hierarchy,” Teor. Mat. Fiz., 58, No. 3, 398–420 (1984).
V. Skrypnik, “Correlation functions of an infinite system of interacting Brownian particles. Local in time evolution close to equilibrium,” J. Statist. Phys., 35, No. 5/6, 587–602 (1984).
V. Skrypnik, “Smoluchowski diffusion in an infinite system at small density. Evolution on a finite time interval,” Teor. Mat. Fiz., 69, No. 1, 128–141 (1986).
V. Skrypnik, “Mean-field limit in a generalized Gibbs system and equivalent nonequilibrium system of interacting Brownian particles,” Teor. Mat. Fiz., 76, No. 1, 100–117 (1988).
V. Skrypnik, “Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean-field limit,” Teor. Mat. Fiz., 79, No. 1, 127–134 (1988).
A. Pilyavskii, A. Rebenko, and V. Skrypnik, “Generalized solutions of the Bogolyubov diffusion hierarchy in the thermodynamic limit. Cluster expansions,” Teor. Mat. Fiz., 93, 119–137 (1992).
E. Strel'tsova, “Nonstationary processes in the electrolyte theory,” Ukr. Mat. Zh., 11, No. 1, 83–92 (1959).
M. Reed and B. Simon, Methods of Modern Mathematical Physics. 2, Academic Press, New York (1975).
J. Ginibre, “Reduced density matrices of quantum gases,” J. Math. Phys. I; II; III, 6 (1965).
D. Brydges and P. Federbush,” Commun. Math. Phys., 73, No. 3, 197–246 (1980).
T. Kennedy, “Debye-Huckel theory for charge symmetric Coulomb systems,” Commun. Math. Phys., 92, No. 2, 269–294 (1983).
J. Fointaine, “Debye-Huckel limit of quantum Coulomb systems I. Pressure and diagonal reduced density matrices,” Commun. Math. Phys., 103, No. 2, 241–257 (1986).
H. Spohn, “Equilibrium fluctuations for interacting Brownian particles,” Commun. Math. Phys., 1–33 (1986).
M. Guo Papanicolau, “Bulk diffusion for interacting Brownian particles,” in: S. Szasz, Progress in Physics-Statistical Physics and Dynamical Systems, 10 (1985), pp. 41–48.
V. Skrypnik, “Functional integral method for Gibbs systems with many-body potential. I,” Teor. Mat. Fiz., 88, No. 1, 115–121 (1991).
D. Ruelle, Statistical Mechanics. Rigorous results, Benjamin (1969).
I. Gikhman and A. Skorokhod, Stochastische Differentialgleicungen, Acad. Verlag, Berlin (1972).
D. Strook and S. Varadhan, Multidimensional Diffusion Processes, Springer, New York (1979).
Additional information
Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Published in Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 10, pp. 1404–1421, October, 1997.
Rights and permissions
About this article
Cite this article
Skrypnik, V.I. Sine-gordon transformations in nonequilibrium systems of Brownian particles. Ukr Math J 49, 1578–1597 (1997). https://doi.org/10.1007/BF02487443
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02487443