Skip to main content
Log in

Sine-gordon transformations in nonequilibrium systems of Brownian particles

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Finite volume grand canonical correlation functions of nonequilibrium systems of d-dimensional Brownian particles, interacting through a regular (long-range) pair potential with integrable first partial derivatives, are expressed in terms of the expectation values of a Gaussian random field. The initial correlation functions coincide with the Gibbs correlation functions corresponding to a more general pair long-range potential. Nonequilibrium Euclidean action is introduced, satisfying a thermodynamic stability property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys., 15, No. 1 (1943).

    Google Scholar 

  2. R. Z. Lang, Wahrscheinlichkeitstheor. Geb., 38, 55–72; 39, 277–299 (1977).

    Article  MATH  Google Scholar 

  3. J. Fritz, J. Statist. Phys., 20, 351–359 (1979).

    Article  MathSciNet  Google Scholar 

  4. G. Lippner, “First order stochastic dynamics of one-dimensional infinite point systems,” Point Proc. Que. Probl., 277–289 (1981).

  5. H. Rost, “Non-equilibrium solution of an infinite system of stochastic differential equations,” Lect. Notes Control Inf. Sci., 25 (1980).

  6. J. Fritz, “Gradient dynamics of infinite point systems,” Ann. Probab., 15, No. 2, 478–514 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Skrypnik, “On generalized Gibbs-type solutions of the diffusion Bogolyubov-Streltsova hierarchy,” Teor. Mat. Fiz., 58, No. 3, 398–420 (1984).

    MathSciNet  Google Scholar 

  8. V. Skrypnik, “Correlation functions of an infinite system of interacting Brownian particles. Local in time evolution close to equilibrium,” J. Statist. Phys., 35, No. 5/6, 587–602 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Skrypnik, “Smoluchowski diffusion in an infinite system at small density. Evolution on a finite time interval,” Teor. Mat. Fiz., 69, No. 1, 128–141 (1986).

    MathSciNet  Google Scholar 

  10. V. Skrypnik, “Mean-field limit in a generalized Gibbs system and equivalent nonequilibrium system of interacting Brownian particles,” Teor. Mat. Fiz., 76, No. 1, 100–117 (1988).

    Google Scholar 

  11. V. Skrypnik, “Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean-field limit,” Teor. Mat. Fiz., 79, No. 1, 127–134 (1988).

    Google Scholar 

  12. A. Pilyavskii, A. Rebenko, and V. Skrypnik, “Generalized solutions of the Bogolyubov diffusion hierarchy in the thermodynamic limit. Cluster expansions,” Teor. Mat. Fiz., 93, 119–137 (1992).

    Google Scholar 

  13. E. Strel'tsova, “Nonstationary processes in the electrolyte theory,” Ukr. Mat. Zh., 11, No. 1, 83–92 (1959).

    Article  Google Scholar 

  14. M. Reed and B. Simon, Methods of Modern Mathematical Physics. 2, Academic Press, New York (1975).

    Google Scholar 

  15. J. Ginibre, “Reduced density matrices of quantum gases,” J. Math. Phys. I; II; III, 6 (1965).

  16. D. Brydges and P. Federbush,” Commun. Math. Phys., 73, No. 3, 197–246 (1980).

    Article  MathSciNet  Google Scholar 

  17. T. Kennedy, “Debye-Huckel theory for charge symmetric Coulomb systems,” Commun. Math. Phys., 92, No. 2, 269–294 (1983).

    Article  MATH  Google Scholar 

  18. J. Fointaine, “Debye-Huckel limit of quantum Coulomb systems I. Pressure and diagonal reduced density matrices,” Commun. Math. Phys., 103, No. 2, 241–257 (1986).

    Article  Google Scholar 

  19. H. Spohn, “Equilibrium fluctuations for interacting Brownian particles,” Commun. Math. Phys., 1–33 (1986).

  20. M. Guo Papanicolau, “Bulk diffusion for interacting Brownian particles,” in: S. Szasz, Progress in Physics-Statistical Physics and Dynamical Systems, 10 (1985), pp. 41–48.

  21. V. Skrypnik, “Functional integral method for Gibbs systems with many-body potential. I,” Teor. Mat. Fiz., 88, No. 1, 115–121 (1991).

    MathSciNet  Google Scholar 

  22. D. Ruelle, Statistical Mechanics. Rigorous results, Benjamin (1969).

  23. I. Gikhman and A. Skorokhod, Stochastische Differentialgleicungen, Acad. Verlag, Berlin (1972).

    Google Scholar 

  24. D. Strook and S. Varadhan, Multidimensional Diffusion Processes, Springer, New York (1979).

    Google Scholar 

Download references

Authors

Additional information

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Published in Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 10, pp. 1404–1421, October, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrypnik, V.I. Sine-gordon transformations in nonequilibrium systems of Brownian particles. Ukr Math J 49, 1578–1597 (1997). https://doi.org/10.1007/BF02487443

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487443

Keywords

Navigation