Skip to main content
Log in

Full cascades of simple periodic orbits on the interval

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Any continuous interval map of type greater than 2∞ is shown to have what we call a full cascade of simple periodic orbits. This is used to prove that, for maps of any types, the existence of such a full cascade is equivalent to the existence of an infinite ω-limit set. For maps of type 2∞, this is equivalent to the existence of a (period doubling) solenoid. Hence, any map of type 2∞ which is either piecewise monotone (with finite number of pieces) or continuously differentiable has both a full cascade of simple periodic orbits and a solenoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Block, “Simple periodic orbits of mappings of the interval,”Trans. Am. Math. Soc., 254, 391–398 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Alseda, J. Llibre, and M. Misiurewicz,Combinatorial Dynamics and Entropy in Dimension One, World Scientific, Singapore 1993.

    MATH  Google Scholar 

  3. J. Hu and C. Tresse,Period Doubling, Entropy, and Renormalization,preprint, SUNY (1995).

  4. A. N. Sharkovsky, “Coexistence of cycles of a continuous mapping of the line into itself,”Ukr. Math. Zh.,16, 61–71 (1964).

    Google Scholar 

  5. A. N. Sharkovsky, “On cycles and the structure of a continuous mapping,”Ukr. Math. Zh.,17, 104–111 (1965).

    Google Scholar 

  6. W. De Melo and S. van Strien,One-Dimensional Dynamics, Springer, Berlin 1993.

    MATH  Google Scholar 

  7. V. V. Fedorenko and A. N. Sharkovsky, “Continuous mappings of an interval with closed sets of periodic points,” in:Investigation of Differential and Differential-Difference Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1980), pp. 137–145.

    Google Scholar 

  8. L. S. Block and W. A. Coppel, “Dynamics in one dimension,”Lect. Notes Math.,1513 (1992).

  9. M. Misiurewicz, “Structure of mappings of an interval with zero entropy,”Inst. Hautes Etudes Sci. Publ. Math.,53, 5–16 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. J. Buder and G. Pianigiani, “Periodic points and chaotic functions in the unit interval,”Bull. Austral. Math. Soc.,18, 255–265 (1978).

    Article  MathSciNet  Google Scholar 

  11. W. A. Coppel, “The solutions of equations by iteration,”Proc. Cambridge Philos. Soc.,51, 41–43 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Jiménez López and L’. Snoha, “There are no piecewise linear maps of type 2∞,”Trans. Am. Math. Soc. (to appear).

  13. M. Martens and C. Tresser, “Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps,”Proc. Am. Math. Soc.,124, 2863–2870 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Alseda, J. Llibre, and R. Sena, “Minimal periodic orbits for continuous maps of the interval,”Trans. Am. Mat. Soc.,286, 595–627 (1984).

    Article  MATH  Google Scholar 

  15. L’. Snoha, “Characterization of potentially minimal periodic orbits of continuous mappings of an interval,”Acta Math. Univ. Comenian,52/53, 111–124 (1987).

    MathSciNet  Google Scholar 

  16. J. Smítal, “Chaotic functions with zero topological entropy,”Trans. Am. Math. Soc.,297, 269–282 (1986).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, V.J., Snoha, L. Full cascades of simple periodic orbits on the interval. Ukr Math J 48, 1843–1851 (1996). https://doi.org/10.1007/BF02375371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375371

Keywords

Navigation