Abstract
We established necessary and sufficient conditions for the existence of finite power moments of all integer negative orders for the principal spectral function of a string. The necesity of this problem is explained by its relation to the so-called strong Stieltjes moment problem.
Similar content being viewed by others
References
O. Njåstad, “Solutions of the strong Stieltjes moment problems,”Math. Appl. Anal.,2, No. 3, 1241–1278 (1995).
W. B. Jones, W. J. Thorn, and H. A. Waadeland, “A strong Stieltjes moment problems,”Trans. Amer. Math. Soc.,261, 503–508 (1980).
M. G. Krein, “On a generalization of Stieltjes results,”Dokl. Akad. Nauk SSSR,87, No. 6, 881–884 (1952).
I. S. Kats and M. G. Krein, “On spectral functions of a string,” in:Discrete and Continuous Boundary-Value Problems [in Russian], Mir, Moscow (1968).
I. S. Kats, “Spectral theory of a string,”Ukr. Mat. Zh.,46, No. 3, 155–176 (1994).
I. S. Kats and M. G. Krein, “R-functions are analytic functions that map the upper half plane onto itself,” in:Discrete and Continous Boundary-Value Problems [in Russian], Mir, Moscow (1968).
I. S. Kats and M. G. Krein, “A criterion of the discreteness of the spectrum of a singular string,”Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 2 (3), 136–153 (1958).
B. Ya. Levin,Distribution of Zeros of Entire Functions [in Russian], Gostekhteoretizdat, Moscow (1956)
M. G. Krein, “On some cases of efficient definition of density of a inhomogeneous string by its spectral function,”Dokl. Akad. Nauk SSSR,93, No. 4, 617–620 (1953).
I. S. Kats, “A theorem on integral estimates for the growth of spectral functions of a string,”Ukr. Mat. Zh.,34, No. 3, 296–302 (1982).
I. S. Kats, “Integral characteristics for the growth of spectral functions of generalized second-order boundary-value problems with boundary conditions at the regular endpoint,”Izv. Akad. Nauk SSSR,35, No. 1, 154–184 (1971).
E. Kamke, Das Lebesgue-Stieltjes-Integral, B. G. Teubner Verlagsgesellschaft, Leipzig (1956).
Additional information
Odessa Academy of Food Technologies, Odessa. Translated from Ukrainskii Matematischeskii Zhurnal, Vol. 48, No. 9, pp. 1209–1222, September, 1996.
Rights and permissions
About this article
Cite this article
Kats, I.S. Power moments of negative order for the principal spectral function of a string. Ukr Math J 48, 1371–1387 (1996). https://doi.org/10.1007/BF02595359
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02595359