Abstract
We investigate Lie and non-Lie symmetries of the two-particle Dirac equation with linear interaction in the one-dimensional case. The integrals of motion and hidden parasupersymmetries are found. By using algebraic method and non-Lie symmetries, we obtain the energy spectra of the considered system
References
V. I. Fushchich and A. G. Nikitin,Symmetry of the Maxwell Equations [in Russian], Naukova Dumka, Kiev (1983).
W. I. Fuschchick and A. G. Nikitin,Symmetries of Equations of Quantum Mechanics, Allerton Press, New York (1994).
J. Beckers, N. Debergh, and A. G. Nikitin, “More on supersymmetries of the Schrödinger equation,”Mod. Phys. Lett., A7, No. 18, 1609–1616 (1992).
J. Beckers, N. Debergh, and A. G. Nikitin, “Lie extended symmetries and relativistic particles,”J. Phys.,A 25, 6145–6154, (1992).
J. Beckers, N. Debergh, and A. G. Nikitin, “More on parasupersymmetries of the Schrödinger equation,”Mod. Phys. Lett.,A 8, No. 5, 435–444 (1992).
J. Beckers, N. Debergh, and A. G. Nikitin, “Extended Dirac symmetries and hidden supersymmetry,”Phys. Lett.,B 279, 333–335 (1992).
J. Beckers, N. Debergh, and A. G. Nikitin, “On supersymmetries in norelativistic quantum mechanics,”J. Math. Phys.,33 (1), 152–160 (1992).
W. I. Fushchich and A. G. Nikitin, “The complete sets of conservation laws for the electromagnetic field,”J. Phys.,A 25, L231-L233 (1992).
A. G. Nikitin and V. I. Fuschich, “Non-Lie integrals of motion for particles with an arbitrary spin and systems of interacting particles,”Teor. Mat. Fiz.,88, No. 3, 405–415 (1991).
F. Dominguez-Adame and B. A. Mendez, “Solvable two-body Dirac equation in the one space dimension,”Can. J. Phys.,69, 780–785 (1991).
L. V. Ovsynannikov,Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).
P. Olver,Application of Lie Groups to Differential Equations, Springer, New York (1986).
V. A. Rubakov and V. P. Spiridonov, “Parasupersymmetric quantum mechanics,”Mod. Phys. Lett,3, No. 14, 1337–1347 (1988).
J. Beckers, “Parastatistics and supersymmetry in quantum mechanics,”Nucl. Phys.,B 340, 767–776 (1990).
Additional information
Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 48, No. 9, pp. 1295–1296, September, 1996.
Rights and permissions
About this article
Cite this article
Tretinik, V.V. Hidden symmetries of the two-particle dirac equation with linear interaction. Ukr Math J 48, 1470–1472 (1996). https://doi.org/10.1007/BF02595367
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02595367