Abstract
In the case of double degeneration of a linearized problem, we study the points of bifurcation of the null solutions of nonlinear equations of special type.
Similar content being viewed by others
References
M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations [in Russian] Gostekhizdat, Moscow 1956.
M. M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations [in Russian] Nauka, Moscow 1969.
G. B. Keller and S. Antman, Branching Theory and Nonlinear Eigenvalue Problems [Russian translation] Mir, Moscow 1979.
J. Ize, “Bifurcation theory for Fredholm operators,” Mem. AMS, 7, 174 (1976).
V. M. Krasnosel’skii, “Investigation of small solutions of one class of nonlinear operator equations,” Dokl. Akad. Nauk SSSR, 180, No. 1, 22–24 (1966).
V. M. Krasnosel’skii, “Investigation of bifurcations of small eigenfunctions in the case of multidimensional degeneration,” Dokl. Akad. Nauk SSSR, 195, No. 5, 1025–1028 (1970).
E. N. Dancer, “Bifurcation theory in real Banach space,” Proc. London Math. Soc., 23, No. 4, 699–734 (1971).
M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya. Stetsenko, Approximate Methods for the Solution of Operator Equations [in Russian] Nauka, Moscow 1969.
M. Ya. Vygodskii, Differential Geometry [in Russian] Gostekhteoretizdat, Moscow-Leningrad 1949.
Rights and permissions
About this article
Cite this article
Dymarskii, Y.M. On branches of small solutions of certain operator equations. Ukr Math J 48, 1017–1027 (1996). https://doi.org/10.1007/BF02390959
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02390959