Skip to main content
Log in

On the equivalence of the Euler-Pommier operators in spaces of analytic functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

In the space A (θ) of all one-valued functions f(z) analytic in an arbitrary region G ⊂ ℂ (0 ∈ G) with the topology of compact convergence, we establish necessary and sufficient conditions for the equivalence of the operators L 1 n z nΔn + ... + α1 zΔ+α0 E and L 2= z n a n (zn + ... + za 1(z)Δ+a 0(z)E, where δ: (Δƒ)(z)=(f(z)-ƒ(0))/z is the Pommier operator in A(G), n ∈ ℕ, α n ∈ ℂ, a k (z) ∈ A(G), 0≤kn, and the following condition is satisfied: Σ n−1 j=s α j+1 ∈ 0, s=0,1,...,n−1. We also prove that the operators z s+1Δ+β(z)E, β(z) ∈ A R , s ∈ ℕ, and z s+1 are equivalent in the spaces A R, 0šRš-∞, if and only if β(z) = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Kothe, “Dualitat in der Funktionen theorie,” J. Reine und Angew. Math., 191, 30–49 (1953).

    MathSciNet  Google Scholar 

  2. M. K. Fage and N. I. Nagnibida, Problem of Equivalence of Ordinary Linear Differential Operators [in Russian] Nauka, Novosibirsk 1987.

    MATH  Google Scholar 

  3. J. Delsartes and J. L. Lions, “Transmutations d’opérateurs differentieles dans le domaine complexe,” Comment. Math. Helv., 32, No. 2, 113–128 (1957).

    MathSciNet  Google Scholar 

  4. M. K. Fage, Operator-Analytic Functions of One Independent Variable [in Russian] Lvov University, Lvov 1959.

    Google Scholar 

  5. K. M. Fishman, “To the problem of equivalence of differential operators in the space of functions analytic in a disk,” Usp. Mat. Nauk, 19, No. 5 (119), 143–147 (1964).

    MathSciNet  Google Scholar 

  6. A. F. Leont’ev, “Estimation of solutions of a differential equation for large absolute values of a parameter and its application to some problems in the theory of functions,” Sib. Mat. Zh., 1, No. 3, 456–487 (1960).

    MATH  MathSciNet  Google Scholar 

  7. I. F. Kushnirchuk, N. I. Nagnibida, and K. M. Fishman, “Equivalence of differential operators with regular singular point,” Funkts. Anal Prilozh., 8, No. 2, 83–84 (1974).

    Google Scholar 

  8. I.I. Ibragimov and N. I. Nagnibida, “Matrix method and quasiexponential bases in the space of functions analytic in a disk,” Usp. Mat. Nauk, 30, No. 6, 101–146 (1975).

    MATH  MathSciNet  Google Scholar 

  9. I. F. Kushnirchuk, “Necessary and sufficient conditions for the equivalence of differential operators with regular singular point,” Sib. Mat. Zh., 19, No. 2. 340–347 (1977).

    MathSciNet  Google Scholar 

  10. Ya. N. Gaborak, I. F. Kushnirchuk, and M. I. Ponyuk, “Equivalence of differential operators of the third order with regular singular point,” Sib. Mat. Zh., 19, No. 6, 1254–1259 (1978).

    MATH  MathSciNet  Google Scholar 

  11. V. V. Ryndina, “On the equivalence of a differential operator of the n th order with regular singular point and the Euler operator in the space A R Differents. Uravn., 15, No. 4, 636–4639 (1979).

    MATH  MathSciNet  Google Scholar 

  12. V. V. Ryndina, “On the equivalence of a differential operator of the n th order with regular singular point and the Euler operator in the space A(G),” Sib. Mat. Zh., 20, No. 3, 674–678 (1979).

    MATH  MathSciNet  Google Scholar 

  13. A. O. Gel’fond and A. F. Leont’ev, “On one generalization of the Fourier series,” Mat. Sb., 29, No. 3, 477–500 (1951).

    MathSciNet  Google Scholar 

  14. V. A. Tkachenko, “On operators of transformation in the space of entire functions,” Sib. Mat. Zh., 20, No. 1, 152–163 (1979).

    MATH  MathSciNet  Google Scholar 

  15. S. S. Linchuk, On Representation of Linear Continuous Operators in Spaces of Analytic Functions [in Russian], Deposited in VINTTI No. 1798–82, Chernovtsy (1982).

  16. S. S. Linchuk and N. I. Nagnybida, “On the equivalence of Pommier operators in the space of functions analytic in a disk,” Sib. Mat. Zh., 31, No. 3, 55–61 (1990).

    Google Scholar 

  17. N. I. Nagnibida, “On conditions of completeness of one system of entire functions and their application to Pommier operators,” Mat. Zametki, 49, No. 1, 154–156 (1969).

    MathSciNet  Google Scholar 

  18. N. I. Nagnibida, “On the equivalence of certain differential operators of the first order with singularities,” Sib. Mat. Zh., 10, No. 6, 1453–1456 (1969).

    MathSciNet  Google Scholar 

  19. N. I. Nagnibida, “Selected problems of university competitions in mathematics “A Student and STP”, Chernovtsy University,” in: A. Ya. Dorogovtsev (editor), Mathematics Today — 90 [in Russian], Vyshcha Shkola, Kiev, (1990), pp. 143–155.

    Google Scholar 

  20. A. E. Grishchenko, N. I. Nagnibida, and P. P. Nastasiev, Theory of Functions of a Complex Variable. Solution of Problems [in Russian] Vyshcha Shkola, Kiev 1986.

    Google Scholar 

  21. N. I. Berezovskii and N. I. Nagnibida, “On the equivalence of operators of multiplication in spaces of analytic functions,” Teor. Funkts. Anal. Prilozh., Issue 25, 21–30 (1976).

    Google Scholar 

  22. N. I. Berezovskii, “On the equivalence of operators of multiplication in the spaces A(G) and A(F),” Ukr. Mat. Zh., 28, No. 4, 443–52 (1976).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagnybida, M.I. On the equivalence of the Euler-Pommier operators in spaces of analytic functions. Ukr Math J 48, 1084–1098 (1996). https://doi.org/10.1007/BF02390966

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02390966

Keywords