Abstract
We establish the inner regularity of solutions and their derivatives with respect to spatial coordinates for a degenerate quasilinear parabolic equation of the second order.
Similar content being viewed by others
References
S. Chanillo and R. L. Wheeden, “Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions,” Amer. J. Math., 107, 1191–1226 (1985).
O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type [in Russian] Nauka, Moscow 1967.
F. Chiarenza and R. A. Serapioni, “A Harnack inequality for degenerate parabolic equations,” Coram. Part. Different. Equat., 9, 719–749 (1984).
C. E. Gutierrez and R. L. Wheeden, “Harnack’s inequality for degenerate parabolic equations,” Comm. Part. Different. Equat., 16, Nos. 4–5, 745–770 (1991).
E. Di Benedetto, “On the local behavior of solutions of degenerate parabolic equations with measurable coefficients,” Ann. Sc. Norm. Sup., 13, No. 3, 485–535 (1986).
E. Di Benedetto and Chen Ya-Zhe, “On the local behavior of solutions of singular parabolic equations,” Arch. Rat. Mech. Anal., 103, No. 4, 319–346 (1988).
E. Di Benedetto and A. Friedman, “Holder estimates for nonlinear degenerate parabolic systems,” J. Reine Math., 357, 1–22 (1985).
S. Leonardi and I.I. Skrypnik, Necessary Conditions for Regularity of a Boundary Point for a Degenerate Quasilinear Parabolic Equations, Preprint, Catania University, Catania (1995).
Rights and permissions
About this article
Cite this article
Skrypnik, I.I. Regularity of solutions of Degenerate Quasilinear Parabolic Equations (weighted case). Ukr Math J 48, 1099–1118 (1996). https://doi.org/10.1007/BF02390967
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02390967