Abstract
We construct an algorithm for determination of the principal term of the asymptotics of a solution of a system of differential equations with slow time and “turning points.”
References
W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Wiley, New York 1965.
N. I. Shkil’, I. I. Starun, and V. P. Yakovets, Asymptotic Integration of Linear Systems of Differential Equations [in Russian], Vyshcha Shkola, Kiev (1989).
N. I. Shkir, I. I. Starun, and V. P. Yakovets, Asymptotic Integration of Linear Systems of Degenerate Ordinary Differential Equations [in Russian], Vyshcha Shkola, Kiev (1991).
N. P. Erugin, General Course in Differential Equations [in Russian], Nauka i Tekhnika, Minsk (1972).
Ali Hasan Nayfeh, Perturbation Methods, Wiley, New York 1973.
J. Schur, “Uber die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integral-gleichungen,” Math. Ann., No. 66, 488–510 (1909).
N. A. Sotnichenko and S. F. Feshchenko, “On the problem of eigenvalues and “turning points” in the theory of systems of differential equations,” Ukr. Mat. Zh., 28, No. 6, 775–785 (1976).
Rights and permissions
About this article
Cite this article
Sotnichenko, N.A. Asymptotics of solutions of à system of differential equations with “turning points”. Ukr Math J 48, 970–972 (1996). https://doi.org/10.1007/BF02384183
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02384183