Abstract
We establish necessary and sufficient conditions for the convergence of normalized homeomorphisms of Sobolev class in terms of the Fourier transforms of complex characteristics in the case where the upper bound of dilations is exponentially bounded in measure. This allows us to construct various metrics generating locally uniform convergence of mappings.
Similar content being viewed by others
References
V. I. Ryazanov, “On quasiconformal mappings with restrictions on measure,”Ukr. Mat. Zh.,45, No. 7, 1009–1019 (1993).
V. I. Ryazanov, “On convergence theorems for homeomorphisms of Sobolev class,”Ukr. Mat. Zh.,47, No. 2, 249–259 (1995).
K. Strebel, “Ein Konvergenzsatz fur Folgen quasikonformer Abbildungen,”Comment. Math. Helv.,44, No. 4, 469–475 (1969).
O. Lento and K. J. Virtanen,Quasikonforme Abbildungen, Springer, Berlin 1965.
B. V. Boyarskii, “Generalized solutions of a system of first-order differential equations of elliptic type with discontinuous coefficients,”Mar. Sb.,43 (85), 451–503 (1957).
L. V. Ahlfors,Lectures on Quasiconformal Mappings [Russian translation], Mir, Moscow 1969.
F. W. Gehring and O. Lehto, “On total differentiability of functions of a complex variable,”Ann. Acad. Sci. Fenn. Ser. A.l Math.,272, 1–9 (1959).
G. David, “Solutions de l’equation de Beltrami avec ||μ||∞=1,”Ann. Acad. Sci. Fenn. Ser. A.l Math.,13, 25–70 (1988).
P. Tukia, “Compactness properties of μ-homeomorphisms,”Ann. Acad. Sci. Fenn. Ser. A.l Math.,16, 47–69 (1991).
V. I. Ryazanov, “On quasiconformal mappings with locally summable bound of deformations,”Dokl. AJcad. Nauk Rossii,332, No. 6, 693–695 (1993).
V. I. Ryazanov, “On homeomorphisms of Sobolev class and mappings quasiconformal in mean,”Dokl. Akad. Nauk Rossii,335, No. 3, 297–299 (1994).
V. I. Ryazanov,Topological Aspects of the Theory of Quasiconformal Mappings and Their Generalizations [in Russian], Doctoral Degree Thesis (Physics and Mathematics), Donetsk (1994).
S. G. Mikhlin,Linear Partial Differential Equations [in Russian], Vysshaya Shkola, Moscow (1977).
G. H. Hardy, J. E. Littlewood, and G Pó1ya,Inequalities, (1934).
M. Schiffer and G. Schober, “Representation of fundamental solutions for generalized Cauchy-Riemann equations by quasiconformal mappings,”Ann. Acad. Sci. Fenn. Ser. A.l Math.,2, 501–531 (1976).
S. L. Krushkal’ and R. Kühnau,Quasiconformal Mappings. New Methods and Applications [in Russian], Nauka, Novosibirsk 1984.
N. Dunford and J. T. Schwartz,Linear Operators. General Theory [Russian translation], Inostrannaya Literatura, Moscow (1962).
K. Kuratowski,Topology [Russian translation], Vol. 1, Mir, Moscow (1966).
P. S. Uryson, “Sur les classes (L *) de M. Frechet,”Ens. Math.,25, 77–83 (1926).
V. I. Ryazanov, “Some questions of convergence and compactness for quasiconformal mappings,”Amer. Math. Soc. Transl.,131, No. 2, 7–19 (1986).
V. I. Ryazanov, “On the convergence of characteristics of quasiconformal mappings,”Ukr. Mat. Zh.,38, No. 2, 200–204 (1986).
A. P. Calderon and A. Zygmund, “On the existence of certain singular integrals,”Acta Math.,88, 85–139 (1952).
S. G. Mikhlin,Multidimensional Singular Integrals and Integral Equations [in Russian], Fizmatgiz, Moscow 1962.
S. G. Mikhlin, “To the theory of multidimensional singular equations,”Vestn. Leningr. Univ., No. 1, 3–24 (1956).
S. M. Nikol’skii,A Course of Mathematical Analysis [in Russian], Nauka, Moscow 1975.
E. M. Stein and G. Weiss,Introduction to Fourier Analysis on Euclidean Spaces [Russian translation], Mir, Moscow 1974.
S. Sacks,Theory of Integrals [Russian translation], Inostrannaya Literatura, Moscow (1949).
K. Leschinger, “Untersuchungen uber Jacobi-Determinanten von Zweidimensionalen quasikonformen Abbildungen,”Bonn. Math. Schriften.,72, 1–58 (1974).
H. Renelt, “Quasikonforme Abbildungen and elliptische Systeme erster Ordnung in der Ebene,”Teubner Texte Math.,46 (1982).
L. V. Kantorovich and G. P. Akilov,Functional Analysis [in Russian], Nauka, Moscow 1984.
Rights and permissions
About this article
Cite this article
Ryazanov, V.I. Criteria of convergence for quasiconformal mappings and their generalizations. Ukr Math J 48, 742–752 (1996). https://doi.org/10.1007/BF02384224
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02384224