Abstract
We construct a hierarchy of Poisson Hamiltonian structures related to an “elliptic” spectral problem and determine the generating operators for the equation of asymmetric chiral 0 (3) — field.
Similar content being viewed by others
References
A. E. Borovik, “N-soliton solutions of the nonlinear Landau-Lifshits equation,” Pis’ma Zh. Eksp. Teor. Fiz., 28, No. 10, 629–632 (1978).
E. K. Sklyanin, On Complete Integrability of the Landau-Lifshits Equation, Preprint No. E-3-79, LOMI, Leningrad (1979).
P. I. Golod, “Hamiltonian systems related to anisotropic Lie algebras and higher Landau-Lifshits equations,” Dokl. Akad. Nauk Ukr. SSR Ser. A, No. 5, 5–8 (1984).
V. G. Bar’yakhtar, E. D. Belokolos, and P. I. Golod, “One-dimensional magnetic structures and higher Landau-Lifshits equations,” Preprint No. 84, Institute of Theoretical Physics, Ukrainian Academy of Sciences, Kiev (1984).
A. G. Reiman and M. A. Semenov-Tyan-Shanskii, “Lie algebras and Lax equations with spectral parameter on an elliptic curve,” Zap. Nauch. Sem. LOMI AN SSSR, 150, 104–118 (1986).
Yu. N. Sidorenko, “Elliptic pencil and generating operators,” Zap. Nauch. Sem. LOMI AN SSSR, 161, 76–87 (1987).
L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow 1986.
W. Oevel, “Dirac constraints in field theory: lifts of Hamiltonian systems to the cotangent bundle,” J. Math. Phys., 29, No 1, 210–219 (1988).
A. K. Prikarpatskii and I. V. Mikityuk, Algebraic Aspects of Integrability of Nonlinear Evolution Equations [in Russian], Naukova Dumka, Kiev 1991.
P P. Kulish, “Generating operators of integrable nonlinear evolution equations,” Zap. Nauch. Sem. LOMI AN SSSR, 96, 105–112 (1980).
Yu. A. Mitropol’skii, N. N. Bogolyubov (jr)., A. K. Prikarpatskii, and V. G. Samoilenko, Integrable Dynamical Systems. Spectral and Differential-Geometrical Aspects [in Russian], Naukova Dumka, Kiev 1987.
I. V. Cherednik, “On the integrability of two-dimensional asymmetric chiral O(3)-field and its quantum analog,” Yad. Fiz., 33, No. 1, 278–281 (1981).
I. E. Dzyaloshinskii, “Theory of helicoidal structures in antiferromagnetics. I. Nonmetalls,” Zh. Eksp. Teor. Fiz., 46, No.4, 1420–1437 (1964).
V. S. Gerjikov and A. V. Yanovski, “Gauge-covariant formulation of the generating operator. I. The Zakharov-Shabat system,” Phys. Lett., 103A, No. 5, 232–236 (1984).
E. Barouch, A. S. Fokas, and V. G. Parageordiou, “The bi-Hamiltonian formulation of the Landau-Lifschitz equation,” J. Math. Phys, 29, No. 12, 2628–2633 (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Prytula, M.M., Sydorenko, Y.M. & Strampp, W. Nonlinear integrable systems related to the elliptic lie—baxter algebra. Ukr Math J 48, 248–266 (1996). https://doi.org/10.1007/BF02372050
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02372050