Abstract
We prove that if ω(t, x, K (m)2 )⩽c(x)ω(t) for allxε[a, b] andx ε [0,b-a] wherec ∈L 1(a, b) and ω is a modulus of continuity, then λ n =O(n −m-1/2ω(1/n)) and this estimate is unimprovable.
Similar content being viewed by others
References
N. Dunford and J. T. Schwartz,Linear Operators. Spectral Theory. Selfadjoint Operators in Hilbert Spaces, Vol. 2, Interscience, New York-London (1963).
A. M. Sedletskii, “On the rate of decrease of the eigenvalues of the Fredholm operator,”Sib. Mat. Zh.,31, No. 5 120–127 (1990).
I. Fredholm, “Sur une classe d’equations fonctionelles,”Acta Math.,27, 365–390 (1903).
B. Ya. Levin,Distribution of the Roots of Entire Functions [in Russian], Gostekhizdat, Moscow 1956.
E. Seneta,Regularly Varying Functions [Russian translation], Nauka, Moscow 1985.
A. Zygmund,Trigonometrical Series [Russian translation], Mir, Moscow 1965.
E. Hille and J. D. Tamarkin, “On the characteristic values of linear integral equations,”Acta Math.,57, 1–76 (1931).
Rights and permissions
About this article
Cite this article
Sheremeta, M.M. On the eigenvalues of the fredholm operator. Ukr Math J 48, 130–139 (1996). https://doi.org/10.1007/BF02390990
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02390990