Abstract
The unique solvability of a certain boundary-value problem is proved for a mixed parabolic-hyperbolic type equation of the third order.
Similar content being viewed by others
References
K. B. Sabitov, “On the Tricomi problem for the Lavrent'ev-Bitsadze equation with a spectral parameter,”Differents. Uravn.,22, No. 11, 1977–1984 (1986).
K. B. Sabitov, “On the theory of equations of mixed parabolic-hyperbolic type with a spectral parameter,”Differents. Uravn.,25, No. 1, 117–126 (1989).
K. Rektorys,Variational Methods in Mathematics, Science and Engineering, Dr. Reidel Publishing Company, Dordrecht-Boston-London; SNTL-Publishers of Technical Literature, Prague (1980).
E. S. Lepin,Higher Algebra Course [in Russian], Gostekhizdat, Moscow (1953).
A. N. Tikhonov and A. A. Samarskii,Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).
I. N. Vekua,New Methods for Solving Elliptic Equations [in Russian], Gostekhizdat, Moscow (1948).
M. S. Salakhitdinov and A. K. Urinov, “On some boundary-value problems with shift for equations of mixed type,” in:Differential Equations and Problems of Branching Theory [in Russian], Fan, Tashkent (1982), pp. 3–12.
F. J. Tricomi, “Sullc equazioni lineari alle derivate parziali di 2 ordinc di tipo misto,”Memorie della R. Accademia Nazionale dei Lincci, serie V., vol. IV, fasc. VII (1923).
T. D. Dzhuraev,Boundary-Value Problems for Equations of Mixed and Mixed-Combined Type [in Russian], Fan, Tashkent (1979).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 1, pp. 20–29, January, 1995.
Rights and permissions
About this article
Cite this article
Eleev, V.A. Boundary-value problem for a mixed parabolic-hyperbolic equation of the third order. Ukr Math J 47, 20–31 (1995). https://doi.org/10.1007/BF01058792
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01058792