Abstract
In the same way as the known spacesM p ,M p , andI p are constructed on the basis of the spaceL p (−1, 1), we construct the corresponding “limit” spacesM E ,M E , andI E on the real line on the basis of a symmetric function spaceE on a segment and study some of their Banach properties.
Similar content being viewed by others
References
J. Marcinkiewicz, “Une remarque sur les espaces de M. Besicowitch,”C. R. Acad. Sci. Paris,208, 157–159 (1939).
A. Beurling, “Construction and analysis of some convolution algebra,”Ann. Inst. Fourier (Grenoble),14, 1–32 (1964).
K. Lau, “On the Banach spaces of functions with bounded upper means,”Pacif. J. Math.,91, 153–173 (1980).
Y. Chen and K. Lau, “Some new classes of Hardy spaces,”J. Funct. Anal.,84, No. 2, 255–278 (1989).
H. P. Rosenthal, “On quasi-complemented subspaces of Banach spaces with an appendix on compactness of operators fromL p(μ) toL r(v),”J. Funct. Anal.,4, 176–214 (1969).
A. N. Plichko, “Fundamental biorthogonal systems and projective bases in Banach spaces,”Mat. Zametki,33, No. 3, 473–476 (1983).
J. Diestel,Geometry of Banach Spaces — Selected Topics, Springer, Berlin (1975).
J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces. I, Springer, Berlin (1977).
J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces. II, Springer, Berlin (1979).
A. M. Plichko and M. M. Popov, “Symmetric function spaces on atomless probability spaces,”Dissertationes Math.,306, 88 (1990).
J. Bourgain, “62-01/c0 has no equivalent strictly convex norm,”Proc. Amer. Soc.,78, No. 2, 255–256 (1980).
Author information
Authors and Affiliations
Additional information
Published in Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 1, pp. 46–55, January, 1995.
Rights and permissions
About this article
Cite this article
Kucher, O.V., Plichko, A.M. Limits on the real line of symmetric spaces on segments. Ukr Math J 47, 50–62 (1995). https://doi.org/10.1007/BF01058795
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01058795