Abstract
We prove the solvability of a boundary-value problem with the Bernoulli condition in the form of an inequality on a free boundary. By using the Rietz method, we construct an approximate solution that converges to an exact solution in the integral metric.
Similar content being viewed by others
References
A. S. Minenko, “On a thermophysical problem with free boundary,”Dokl. Akad Nauk Ukr. SSR, Ser. A, No. 6, 413–416 (1979).
I. I. Danilyuk and A. S. Minenko, “On the variational method for investigation of the quasistationary Stefan problem,”Usp. Mat. Nauk,43, No. 5, 228 (1981).
I. I. Danilyuk and A. S. Minenko, “On a thermophysical variational problem with free boundary,” in:Proceedings of the Conference on Mixed Boundary-Value Problems for Partial Differential Equations and Problems with Free Boundaries, Stuttgart (1978), pp. 9–18.
I. I. Danilyuk, “On the Stefan problem,”Usp. Mat. Nauk,40, No. 5, 133–185 (1985).
I. I. Danilyuk, “On integral functionals with variable domain of integration,”Tr. Mat. Inst. Akad. Nauk SSSR,118, 1–112 (1972).
A. S. Minenko, “On the variational method of investigation of a nonlinear problem of potential flow of liquid,”Nelin. Granich. Zad., No. 3, 60–66 (1991).
A. S. Minenko, “On the variational method of investigation of a problem of rotational flow of liquid with free boundary,”Nelin. Granich. Zad., No. 5, 58–64 (1993).
I. I. Danilyuk and A. S. Minenko, “On the Rietz method for a nonlinear problem with free boundary,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 4, 291–294 (1978).
I. I. Danilyuk and A. S. Minenko, “An optimization problem with free boundary,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 5, 389–392 (1976).
A. S. Minenko, “Convergence of the Rietz method in a problem with free boundary,” in:Boundary-Value Problems in Mathematical Physics [in Russian], Naukova Dumka, Kiev (1979), pp. 139–145.
A. S. Minenko, “Problem of minimum for a class of integral functionals with unknown domain of integration,”Mat. Fiz. Nelin. Mekh.,16, 48–52 (1993).
A. S. Minenko, “Investigation of axially symmetric flow with free boundary,”Nelin. Granich. Zad., No. 5, 65–71 (1993).
P. R. Garabedian, H. Lewy, and M. Schiffer, “Axially symmetric cavitational flow,”Ann. Math.,56, No. 3, 560–602 (1952).
K. O. Friedrichs, “Über ein Minimumproblem für Potentialstromungen mit freiem Rande,”Math. Ann.,109, 60–82 (1993).
H. W. Alt, A. Friedman, and L. A. Caffarelli, “Axially symmetric jet flows,”Arch. Ration. Mech. Anal.,81, No. 2, 97–149 (1983).
A. Friedman, “Axially symmetric cavities in flows,”Commun. Partial Different. Equat.,8, No. 9, 949–997 (1983).
M. A. Lavrent'ev, “Some properties of schlicht functions with applications to the theory of jets,”Mat. Sb.,4, No. 3, 391–453 (1938).
A. S. Minenko, “On analyticity of free boundary in a thermophysical problem,”Mat. Fizika, No. 33, 80–82 (1983).
L. V. Kantorovich, “On convergence of variational processes,”Dokl. Akad. Nauk SSSR,32, 95–97 (1941).
J. Crank,Free and Moving Boundary Problems, Oxford University Press, Oxford (1994).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 4, pp. 477–487, April, 1995.
Rights and permissions
About this article
Cite this article
Minenko, A.S. Axially symmetric flow with free boundary. Ukr Math J 47, 555–566 (1995). https://doi.org/10.1007/BF01056041
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01056041