Abstract
We present a method for the solution of nonlinear second-order differential equations by using a system of Fredholm equations of the second kind.
Similar content being viewed by others
References
G. Sansone,Equazioni Differenziali nel Campo Reale [Russian translation], Vol. 2, Inostrannaya Literatura, Moscow (1959).
R. Bellman,Stability Theory of Differential Equations, McGraw-Hill, New York (1953).
I. T. Kiguradze and T. A. Chanturiya,Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations [in Russian], Nauka, Moscow (1990).
E. Goursat,Cours D'Analyse Mathematique [Russian translation], Vol. 3, Pt. 2, Gostekhteorizdat, Moscow-Leningrad, (1934).
R. E. Edwards,Fourier Series. A Modern Introduction [Russian translation], Vol. 1, Mir, Moscow (1985).
S. G. Krein (editor),Functional Analysis [in Russian], Nauka, Moscow (1972).
S. V. Vdovkin, A. I. Voronkov, and S. G. Mikhlin, “On numerical realization of the resolvent method,” in:Solution of Functional Equations and Related Problems [in Russian], Leningrad University, Leningrad (1983), pp. 42–60.
M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya. Stetsenko,Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1969).
Yu. D. Sokolov,Method of Averaging Functional Corrections [in Russian], Naukova Dumka, Kiev (1967).
Yu. A. Mitropol'skii and A. M. Samoilenko,Mathematical Problems in Nonlinear Mechanics [in Russian], Vyshcha Shkola, Kiev (1987).
F. G. Tricomi,Differential Equations [Russian translation], Inostrannaya Literatura, Moscow (1960).
A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko,Method of Differential Relations and Its Applications to Gas Dynamics [in Russian], Nauka, Novosibirsk (1984).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 9, pp. 1254–1260, September, 1995.
Rights and permissions
About this article
Cite this article
Perchik, E.L. A method for solution of nonlinear ordinary differential equations. Ukr Math J 47, 1427–1434 (1995). https://doi.org/10.1007/BF01057517
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01057517