Abstract
We prove theorems which establish estimates for the domain of stability of a differential system with rational right-hand side. We also construct estimates of the convergence of solutions of the system.
Similar content being viewed by others
References
J. M. Smith,Models in Ecology, Cambridge University Press, Cambridge (1974).
G. I. Marchuk,Mathematical Models in Immunology [in Russian], Nauka, Moscow (1985).
A. D. Bazykin,Mathematical Biophysics of Interacting Populations [in Russian], Nauka, Moscow (1985).
K. G. Valeev and G. S. Finin,Construction of Lyapunov Functions [in Russian], Naukova Dumka, Kiev (1981).
V. M. Matrosov and A. I. Malikov, “Development of Lyapunov's ideas for 100 years: 1892–1992,”Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 3–47, (1993).
A. A. Martynyuk, V. Lakshmikantham, and S. Leela,Stability of Motion: Method of Integral Inequalities [in Russian], Naukova Dumka, Kiev (1989).
D. G. Korenevskii,Stability of Dynamic Systems under Random Perturbations of Parameters [in Russian], Naukova Dumka, Kiev (1989).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 9, pp. 1295–1299, September, 1995.
Rights and permissions
About this article
Cite this article
Khusainov, D.Y., Shevelenko, E.E. Stability of differential systems with rational right-hand sides. Ukr Math J 47, 1473–1478 (1995). https://doi.org/10.1007/BF01057522
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01057522