Abstract
We establish conditions for majorants under which the classical Hardy-Littlewood theorem for the class of functions analytic in a disk is true in terms of derivatives of arbitrary fixed order.
References
C. A. Nolder and D. M. Oberlin, “Moduli of continuity and Hardy-Littlewood theorem,”Lect. Notes Math.,1351, 265–272 (1988).
P. M. Tamrasov,Smoothnesses and Polynomial Approximations [in Russian], Naukova Dumka, Kiev (1975).
A. Hinkkanen, “On the modulus of continuity of analytic functions,”Ann. Acad. Scientiarum Fennicae. Ser. A. I. Mathematica.,10, 247–253 (1985).
A. Hinkkanen, “On the majorization of analytic functions,”Indiana Univ. Math. J.,36, No. 2, 307–331 (1987).
C. A. Nolder, “Conjugate functions and moduli of continuity,”Illinois J. Math.,31, No. 4, 699–709 (1987).
G. M. Goluzin,Geometric Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1966).
P. L. Duren,Theory of H p Spaces, Academic Press, New York (1970).
S. N. Bernshtein, “On some properties of regularly monotone functions,” in: S. N. Bernshtein,Works [in Russian], Vol. 1, Academy of Sciences of the USSR, Moscow (1952).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 11, pp. 1574–1576, November, 1995.
Rights and permissions
About this article
Cite this article
Gorbaichuk, V.I., Piddubnyi, O.M. On majorants in the hardy-littlewood theorem for higher derivatives. Ukr Math J 47, 1798–1800 (1995). https://doi.org/10.1007/BF01057928
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01057928