Abstract
We find non-Gaussian limiting distributions of the solutions of the many-dimensional Burgers equation with the initial condition given by a homogeneous isotropic Gaussian random χ2-type field with strong dependence.
Similar content being viewed by others
References
J. M. Burgers, “A mathematical model illustrating the theory of turbulence,”Adv. Appl. Mech., 171–189 (1948).
S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev,Nonlinear Random Waves in Dispersion-Free Media [in Russian], Nauka, Moscow (1990).
G. B. Whitham,Linear and Nonlinear Waves, Wiley, New York (1974).
M. Rosenblatt, “Remark on the Bürgers equation,”J. Math. Phys.,9, 1129–1136 (1968).
M. Rosenblatt, “Fractional integrals of stationary processes and the central limit theorem,”J. Appl. Probab.,13, 723–732 (1976).
M. Rosenblatt, “Scale normalization and random solutions of the Bürgers equation,”J. Appl. Probab.,24, 328–338 (1987).
A. B. Bulinskii and S. A. Molchanov, “On the property of a solution of the Bürgers equation with random initial data of being asymptotically Gaussian,”Teor. Ver. Primen.,36, No. 2, 217–235 (1991).
L. Giraitis, S. A. Molchanov, and D. Surgailis, “Long memory shot noises and limit theorems with applications to Burger's equations. New direction in time series analysis. Pt. II,”IMA Volumes, Math. Appl.,46, 153–171 (1963).
Ya. G. Sinai, “Two results concerning the asymptotic behavior of solutions of the Bürgers equations with force,”J. Statist. Phys.,64, 1–12 (1991).
N. N. Leonenko and E. Orsingher, “Limit theorems for solutions of Bürgers equation with Gaussian and non-Gaussian initial conditions,”Teor. Ver. Primen.,40, No. 2, 387–403 (1991).
S. M. Berman, “High level sojourns for strongly dependent Gaussian processes,”Z. Wahrscheinlichkeitstheor. Verw. Geb.,50, 223–236 (1979).
R. L. Dobrushin and P. Major, “Non-central limit theorems for nonlinear functionals of Gaussian fields,”Z. Wahrscheinlichkeitstheor. Verw. Geb.,50, 1–28 (1979).
M. S. Taqqu, “Convergence of integrated processes of arbitrary Hermite rang,”Z. Wahrscheinlichkeitstheor. Verw. Geb.,50, No. 1, 55–83 (1979).
A. V. Ivanov and N. N. Leonenko,Statistical Analysis of Random Fields, Kluwer AP, Dordrecht (1989).
N. N. Leonenko, E. Orsingher, and K. V. Rybasov, “Limiting distributions of the solutions of the many-dimensional Bürgers equation with random initial data. I,”Ukr. Mat. Zh.,46, No. 7, 870–877 (1994).
N. N. Leonenko and A. Ya. Olenko, “Tauberian and Abelian theorems for correlation functions of homogeneous isotropic random fields,”Ukr. Mat. Zh.,43, No. 12, 1652–1664 (1991).
A. Ya. Olenko,Some Problems of Correlation and Spectral Theory of Random Fields [in Russian], Author's Abstract of the Candidate Degree Thesis (Physics and Mathematics), Kiev (1991).
N. N. Leonenko and A. Ya. Olenko, “Tauberian theorems for correlation functions and limit theorems for spherical averages of random fields,”Random Oper. Stoch. Eqs.,1, No. 1, 58–68 (1992).
P. Major, “Multiple Wiener-Itô integrals,”Lect. Notes Math.,849, (1981).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 46, No. 8, pp. 1003–1010, August, 1994.
Rights and permissions
About this article
Cite this article
Leonenko, N.N., Orsingher, E. & Rybasov, K.V. Limiting distributions of the solutions of the many-dimensional Bürgers equation with random initial data. II. Ukr Math J 46, 1101–1109 (1994). https://doi.org/10.1007/BF01056171
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01056171