Abstract
We generalize the method for construction of operator stochastic integrals suggested by Berezanskii, Zhernakov, and Us. We extend the class of integrable commutative quantum processes and study properties of corresponding integrals.
References
Yu. M. Berezanskii, N. V. Zhernakov, and G. F. Us, “Operator stochastic integrals,”Ukr. Mat. Zh.,39, No. 2, 144–149 (1987).
Yu. M. Berezanskii, N. V. Zhernakov, and G. F. Us, “A spectral approach to quantum stochastic integrals,”Repts. Math. Phys.,28, No. 3, 347–360 (1989).
Yu. M. Berezanskii,Self-Adjoint Operators in Spaces of Functions of Infinitely Many Variables [in Russian], Naukova Dumka, Kiev (1978).
Yu. M. Berezanskii and Yu. G. Kondrat'ev,Spectral Methods in Infinite-Dimensional Analysis [in Russian], Naukova Dumka, Kiev (1988).
R. L. Hudson, “The strong Markov property for canonical Wiener process,”J. Funct. Anal.,34, No. 2, 266–281 (1979).
K. R. Parthasarathy and K. B. Sinha, “Stop times in Fock space stochastic calculus,”Probab. Theor. Rel. Fields,75, No. 3, 317–349 (1987).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 46, No. 4, pp. 425–429, April, 1994.
This work was partially supported by the Ukrainian State Committee on Science and Technology.
Rights and permissions
About this article
Cite this article
Gorbunov, A.V. A generalization of operator stochastic integrals. Ukr Math J 46, 449–453 (1994). https://doi.org/10.1007/BF01060415
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01060415