Abstract
This is a brief survey of M. G. Krein's contribution to the theory of self-adjoint extensions of Hermitian operators and to the theory of boundary-value problems for differential equations. The further development of these results is also considered.
Similar content being viewed by others
References
J. von Neumann. “Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren,”Math. Ann.,102, 49–131 (1929).
H. Weyl, “Über gewohnliche lineare Differentialgleichungen mit Singularen Stellen und ihre Eigenfunktionen,”Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. Kl., 37–63 (1909).
H. Weyl, “Über gewohnliche Differentialgleichungen mit Singulariten und die Zugehorigen Entwicklungen willkurlicher Funktionen,”Math. Ann.,68, 220–269 (1910).
M. G. Krein and M. A. Rrasnosel'skii, “Main theorems on extensions of Hermitian operators and their applications to the theory of orthogonal polynomials and moment problem,”Usp. Mat Nauk,3, No. 3, 61–106 (1947).
N. Dunford and J. T. Schwanz,Linear Operators. Pt III. Spectral operators, Wiley-Interscience, New York-London-Sydney-Toronto (1971).
M. G. Krein, “On self-adjoint extensions of bounded and semibounded Hermitian operators,”Dokl Akad. Nauk SSSR,48, No. 5, 323–326 (1945).
M. G. Krein. “Theory of self-adjoint extensions of semibounded Hermitian operators and its applications. I,”Mat. Sb.,20, No. 3, 431–495 (1947).
M. G. Krein, “Theory of self-adjoint extensions of semibounded Hermitian operators and its applications. II,”Mat. Sb.,21, No. 3, 365–404 (1947).
M. I. Vishik, “General boundary-value problems for elliptic differential equations,”Trudy Mosk. Mat. Obshch.,1, 187–246 (1952).
M. Sh. Birman, “To the theory of self-adjoint extensions of positive definite operators,”Mat. Sb.,38, No. 4, 431–450 (1956).
M. A. Naimark, “On the second-kind self-adjoint extensions of a symmetric operator,”Izv. Akad. Nauk SSSR,4, No. 1, 53–104 (1940).
M. A. Naimark, “Spectral functions of a symmetric operator,”Izv. Akad. Nauk SSSR,4, No. 3, 277–318 (1940).
M. G. Krein, “On Hermitian operators whose deficiency indices are equal to one,”Dokl. Akad. Nauk SSSR,43, No. 8, 323–326 (1944).
M. A. Naimark, “On spectral functions of a symmetric operator,”Izv. Akad. Nauk SSSR,7, No. 6, 285–296 (1943).
M. G. Krein, “On Hermitian operators whose deficiency indices are equal to one. II,”Dokl. Akad. Nauk SSSR,44, No. 4, 131–134 (1944).
M. G. Krein, “On a remarkable class of Hermitian operators,”Dokl. Akad. Nauk SSSR,44, No. 5, 191–195 (1944).
M. G. Krein. “On the resolvents of an Hermitian operator with deficiency index (m, m)”Dokl. Akad. Nauk SSSR,52, No. 8, 657–660 (1946).
M. G. Krein. “Foundations of the theory of representations of Hermitian operators with deficiency index (m, m)”Ukr. Mat. Zh.,1, No. 2, 1–65 (1949).
M. G. Krein and Sh. N. Saakyan, “New results in the theory of resolvents of Hermitian operators,”Dokl. Akad. N auk SSSR,169, No. 6. 1269–1272 (1966).
M. G. Krein and I. E. Ovcharenko, “To the theory of generalized resolvents of nondensely defined Hermitian contractions,”Dokl. Akad. Nauk Ukr. SSR. Ser. A. No. 10. 881–884 (1977).
M. G. Krein and I. E. Ovcharenko, “On theQ-functions and sc-resolvents of nondensely defined Hermitian contractions,”Sib. Mat. Zh.,18, No. 5. 1032–1056 (1987).
M. G. Krein and I. E. Ovcharenko, “On the generalized resolvents and resolvent matrices of positive Hermitian operators,”Dokl. Akad. Nauk SSSR,231, No. 5, 1063–1066 (1977).
M. G. Krein and Sh. N. Saakyan, “A resolvent matrix of an Hermitian operator and the characteristic functions associated with it,”Funkts. Anal. Prilozhen.,4, No. 3, 103–104 (1970).
M. G. Krein, “Analytical problems and results in the theory of linear operators in Hilbert spaces,” in: Proceedings of the Internat. Congress of Mathematicians (Moscow, 1966) [in Russian], Moscow (1968), pp. 189–231.
É. R. Tsekanovskii and Yu. L. Shmul'yan, “Problems of the theory of extensions of unbounded operators in rigged Hilbert spaces,” in:Itogi VINITI, Mathematical Analysis [in Russian], Vol. 14, VINITI, Moscow (1977), pp. 59–100.
F. S. Rofe-Beketov, “Self-adjoint extensions of differential operators in the spaces of vector functions,”Dokl. Akad. Nauk SSSR,184, No. 5, 1034–1037 (1969).
F. S. Rofe-Beketov, “On self-adjoint extensions of differential operators in a space of vector functions,”Teor. Funk., Funkts. Anal. Prilozhen., Issue 8, 3–24, (1969).
M. L. Gorbachuk, “Self-adjoint boundary-value problems for a second-order differential equation with an unbounded operator coefficient,”Funkts. Anal. Prilozhen.,5, No. 1, 10–21 (1971).
V. I. Gorbachuk and M. L. Gorbachuk, “On the spectrum of self-adjoint extensions of the minimal operator generated by the Sturm-Liouville expression with an operator potential,”Ukr. Mat. Zh.,24, No. 6, 726–734 (1972).
V. I. Gorbachuk and M. L. Gorbachuk, “On some classes of boundary-value problems for the Sturm-Liouville equation with an operator potential,”Ukr. Mat. Zh.,24, No. 3, 291–304 (1972).
A. N. Kochubei, “On the extensions of symmetric operators and symmetric binary relations,”Mat. Zametki,17, No. 1, 41–48 (1975).
V. M. Brak, “On a class of boundary-value problems with a spectral parameter in boundary conditions,”Mat. Sb.,100, No. 2, 210–216 (1976).
V. I. Gorbachuk, M. L. Gorbachuk, and A. N. Kochubei, “Theory of extensions of symmetric operators and boundary-value problems for differential equations,”Ukr. Mat. Zh.,41, No. 10, 1299–1313 (1989).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 46, Nos. 1–2, pp. 55–62, January–February, 1994.
Rights and permissions
About this article
Cite this article
Gorbachuk, M.L., Gorbachuk, V.I. Theory of self-adjoint extensions of symmetric operators. entire operators and boundary-value problems. Ukr Math J 46, 54–61 (1994). https://doi.org/10.1007/BF01057000
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01057000