Abstract
The weak convergence of random fields, constructed in terms of the least squares estimator of the regression coefficient of a random field (which is a two-parametric martingale difference), is established.
References
A. K. Basu and C. C. Y. Dorea, “On functional central limit theorems for a stationary martingale random fields,”Acta Math. Sci. Hungar.,33, Nos. 3–4, 307–316 (1979).
N. N. Leonenko and Yu. S. Mishura, “On invariance principle for multi-parametric martingales,”Teor. Ver. Mat. Stat., Issue 24, 51–60 (1981).
R. Morkvenas, “Invariance principle for martingales on the plane,”Litov. Mat. Sb. (Liet. Mat. Rinkinys),24, No. 4, 127–132 (1984).
I. I. Gikhman, “Two-parametric martingales,”Usp. Mai. Nauk,37, Issue 6, 3–28 (1982).
D. C. Meleish, “Dependent central limit theorems and invariance principles,”Ann. Prob.,2, No. 4, 620–628 (1974).
N. N. Chentsov, “Limit theorems for some classes of random functions,” in:Proc. of All-Union Conference on Probability Theory and Math. Statistics [in Russian], Erevan (1960), pp. 280–284.
P. Billingoli,Convergence of Probability Measures [Russin translation], Nauka., Moscow (1977).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 45, No. 1, pp. 128–131, January, 1993.
Rights and permissions
About this article
Cite this article
Koval', T.L. Invariance principle for the least squares estimates. Ukr Math J 45, 141–145 (1993). https://doi.org/10.1007/BF01062047
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01062047