Abstract
We study a system inverse to the nonlinear dynamical Benney-Kaup system. For this system, we prove the existence of an infinite hierarchy of functionally independent and involution conservation laws; a pair of implicative and Noetherian operators is constructed which enables one to write the system in a bi-Hamiltonian form; we also present the explicit form of the Lax operator.
Similar content being viewed by others
References
N. N. Bogolyubov, Jr. and A. K. Prikarpatskii, “Complete integrability of the ItÔ and Benney-Kaup nonlinear systems: the gradient algorithm and the Lax representation,”Teor. Mat. Fiz.,67, No. 3, 410–425 (1986).
S. P. Novikov (editor), Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980).
Yu. A. Mitropol'skii, N. N. Bogolyubov, Jr., A. K. Prikarpatskii, and V. G. Samoilenko,Integrable Dynamical Systems [in Russian], Naukova Dumka, Kiev (1987).
A. K. Prikarpatskii, “Gradient algorithm of constructing the criteria of integrability for nonlinear dynamical systems,”Dokl. Akad. Nauk SSSR,267, No. 4, 327–332 (1986).
V. G. Samoilenko, N. N. Pritula, and U. S. Suyarov,Analysis of the Complete Integrability of the Inverse Korteweg—de Vries Equation [in Russian], Preprint 89.71, Institute of Mathematics, Ukrainian Acad. Sci., Kiev (1989).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 45 No. 3, pp. 353–360, March, 1993.
Rights and permissions
About this article
Cite this article
Drobotskaya, I.S. Analysis of complete integrability of a system inverse to the nonlinear Benney-Kaup system. Ukr Math J 45, 373–382 (1993). https://doi.org/10.1007/BF01061009
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01061009