Abstract
Some aspects of the application of differential geometry methods to the study of the integrability of non-linear dynamical systems given on infinite-dimensional functional manifolds are considered.
References
A. M. Vasil'ev,Theory of Differential Geometry Structures [in Russian], Moscow University, Moscow (1987).
V. I. Arnol'd, A. I. Varchenko, and S. M. Gusein-Zade,Peculiarities of Differentiable Mappings [in Russian], Nauka, Moscow (1982).
P. J. Olver, “On the Hamiltonian structure of evolution equations,”Math. Proc. Cambridge Philos. Soc.,88, No. 1, 71–88 (1980).
I. M. Gel'fand and L. A. Dikii, “Asymptotics of the resolvent of Sturm-Liouville equations and the algebra of Korteweg — de Vries equations,”Uspekhi Mat. Nauk,30, No. 5, 67–100 (1875).
B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko,Modern Geometry [in Russian], Nauka, Moscow (1984).
C. Godbillon,Géométrie Différentielle et Mécanique Analytique [Russian translation], Mir, Moscow (1973).
O. I. Bogoyavlenskii and S. P. Novikov, “On the connection of Hamiltonian formalism of the stationary and nonstationary problems,”Funkts. Anal. Prilozhen.,10, No. 1, 9–13 (1976).
V. G. Samoilenko and A. K. Prikarpatskii, “Algebraic structure of the gradient method of constructing the criteria of integrability for nonlinear dynamical systems,” in:Functional Equations in Statistical Mechanics and Nonlinear Dynamical Systems [in Russian], Preprint No. 86.53, Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev (1986), pp. 19–56.
L. A. Takhtadzhan and L. D. Faddeev,Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986).
Yu. A. Mitropol'skii, N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, and V. G. Samoilenko,Integrable Dynamical Systems [in Russian], Naukova Dumka, Kiev (1987).
Yu. A. MitropoŚkii, A. K. Prikarpatskii, and V. G. Samoilenko, “Asymptotic methods of constructing the implectic and Noether operators for completely integrable Hamiltonian systems,”Dokl. Akad. Nauk SSSR,287, No. 6, 1312–1317 (1986).
P. D. Lax, “Periodic solutions of the Korteweg — de Vries equation,”Commun. Pure Appl. Math.,28, No. 1, 141–188 (1975).
O. I. Mokhov, “On the Hamiltonian property of an arbitrary evolutionary system on the set of stationary points of its integral,”Izv. Akad. Nauk SSSR, Ser. Mat.,51, No 6, 1345–1351 (1987).
A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, “A symmetry approach to the classification of nonlinear equations. Complete lists of integrable systems,”Uspekhi Mat. Nauk,42, No. 4, 3–53 (1987).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 45, No. 3, pp. 419–427, March, 1993.
Rights and permissions
About this article
Cite this article
Samoilenko, V.G. Integrability of nonlinear dynamical systems and differential geometry structures. Ukr Math J 45, 448–456 (1993). https://doi.org/10.1007/BF01061017
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01061017