Abstract
The principal result of the paper is a criterion of compactness for mappings quasiconformal in the mean. The semicontinuity of a deformation of homeomorphisms from the Sobolev class is also proved.
Similar content being viewed by others
References
L. V. Ahlfors, “On quasiconformal mappings,”J. Anal. Math.,3, 1–58 (1953/1954).
O. Lehto, “Homeomorphisms with a given dilatation,”Lect. Notes Math.,118, 58–73 (1970).
I. N. Pesin, “Mappings quasiconformal in the mean,”Dokl. Akad. Nauk SSSR,187, No. 4, 740–742 (1969).
S. L. Kiushkal', “On the mappings quasiconformal in the mean,”Dokt. Akad. Nauk SSSR,157, No. 3, 517–519 (1964).
S. L. Krushkal' and R. Kuhnau,Quasiconformal Mappings. New Methods and Applications [in Russian], Nauka, Novosibirsk (1984).
V. A. Zorich, “On the admissible order of growth of the characteristic of quasiconformality in the Lavrent'ev theorem,”Dokl. Akad. Nauk SSSR,181, No. 3, 530–533 (1968).
G. David, “Solutions de 1'equation de Beltrami avec ∥ μ ∥∞=1,”Ann. Acad. Sci. Fern. Ser. Al, Math.,13, 25–70 (1988).
S. G. Mikhlin,Linear Partial Differential Equations [in Russian], Vysshaya Shkola, Moscow (1977).
L. V. Ahlfors,Lectures on Quasiconformal Mappings, Van Nostrand, Princeton (1966).
O. Lehto and K. J. Virtanen,Quasikonforme Abbildungen, Springer, Berlin (1965).
B. V. Boyarskii, “Generalized solutions of a system of first-order differential equations of elliptic type with discontinuous coefficients,”Mat. Sb.,43, 451–503 (1957).
P. P. Belinskii,General Properties of Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1974).
M. A. Lavrent'ev, “Sur une classe de representations continues,”Mat. Sb.,42, 407–423 (1935).
S. Saks,Theory of Integrals [Russian translation], Izd. Inostr. Literal., Moscow (1949).
N. Bourbaki,Functions of Real Variable, Addison-Wesley, Reading, MA (1982).
M. A. Krasnosel'skii and Ya. B. Rutitskii,Convex Functions and Orlicz Spaces [in Russian], Fizmatgiz, Moscow (1958).
K. Strebel, “Ein Konvergenzsatz für Folgen quasikonformer Abbildungen,”Comment. Math. Helv.,44, No. 4, 469–475 (1969).
Yu. G. Reshetnyak,Spatial Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).
G. G. Hardy, J. E. Littlewood, and G. Polya,Inequalities [Russian translation], Izd-vo Inostr. Literat., Moscow (1948).
P. R. Halmos,Measure Theory, Springer Verlag, New York (1974).
N. Dunford and J. T. Schwartz,Linear Operators, Interscience, New York-London (1963).
V. Ya. Gutlyanskii, and V. I. Ryazanov, “On quasiconformal mappings with integral restrictions on the Lavrent'ev characteristic,”Sib. Mat. Zh.,31, No. 2, 21–36 (1990).
V. I. Ryazanov, “On compactification of classes with integral restrictions on Lavrent'ev's characteristics,”Sib. Mat. Zh.,32, No. 1, 87–104 (1992).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 45, No. 7, pp. 1009–1019, July, 1993.
Rights and permissions
About this article
Cite this article
Ryazanov, V.I. Quasicqnformal mappings with restrictions in measure. Ukr Math J 45, 1121–1133 (1993). https://doi.org/10.1007/BF01057458
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01057458