Skip to main content
Log in

On the reduction principle in the theory of stability of motion

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

This paper deals with the development of Lyapunov's idea of reducing the problem of stability of the trivial solution of a system of higher-order differential equations to a similar problem for a system of lower order. Special attention is paid to the application of integral manifolds and approximate integral manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Poincaré,New Methods of Celestial Mechanics. Selected works. Vol. 1 [Russian translation], Nauka, Moscow (1972).

    Google Scholar 

  2. A. M. Lyapunov,General Problem of Stability of Motion [in Russian], Gostekhizdat, Moscow (1950).

    Google Scholar 

  3. G. V. Kamenkov,Selected Work,. Vol. 2, Stability and Oscillations of Nonlinear Systems [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  4. G. V. Malkin, “Fundamental theorems of the theory of stability of motion in critical cases,”Prikl. Mat. Mekh.,6, Issue 6, 634–648 (1942).

    Google Scholar 

  5. I. G. Malkin,Theory of Stability of Motion [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  6. V. N. Postnikov,Theory of Stability of Motion in Critical Cases [in Russian], Candidate Degree Thesis (Physics and Mathematics), Moscow (1942).

  7. S. V. Kalinin, “On stability of periodic motions in the case where one root is equal zero,”Prikl. Mat. Mekh.,12, Issue 5, 671–672 (1948).

    Google Scholar 

  8. S. V. Kalinin, “On stability of periodic motions in the case where the characteristic equation has two imaginary roots. I,” in:Problems of Applied Mathematics and Mechanics [in Russian] (1953), pp. 155–163

  9. S. V. Kalinin, “On stability of periodic motions in the case where the characteristic equation has two imaginary roots. II,” in:Problems of Applied Mathematics and Mechanics [in Russian] (1955), pp. 79–88.

  10. E. I. Dykhman, “On the reduction principle,”Izv. Akad. Nauk Kaz. SSR. Ser. Mat. Mekh., Issue 4, 73–84 (1950).

    Google Scholar 

  11. K. P. Persidskii, “Some critical cases of the stability of countable systems,”Izv. Akad. Nauk Kaz. SSR. Ser. Mat. Mekh., Issue 5, 3–24 (1951).

    Google Scholar 

  12. N. N. Bogolyubov,Statistical Methods in Mathematical Physics [in Russian], Izd. Akad. Nauk Ukrain. SSR, Lvov (1945).

    Google Scholar 

  13. O. B. Lykova, “On the behavior of solutions of a system of differential equations in a vicinity of isolated statistical solution,”Ukr. Mat. Th.,9, No. 3, 419–431 (1957).

    Google Scholar 

  14. O. B. Lykova, “On the behavior of solutions of a system of differential equations in a vicinity of isolated statistical solution,”Dokl. Akad. Nauk SSSR, No. 3, 447–449 (1957).

    Google Scholar 

  15. O. B. Lykova, “Investigation of solutions of nonlinear systems that are close to integrable systems by the method of integral manifolds,” in:Proceedings of the International Symposium in Nonlinear Oscillations, Kiev (1963), pp. 315–323.

  16. N. N. Bogolyubov and Yu. A. Mitropol'skii, “Method of integral manifolds in nonlinear mechanics,” in:Proceedings of the International Symposium in Nonlinear Oscillations, Kiev (1963), pp.93–154.

  17. Yu. A. Mitropol'skii and O. B. Lykova,Integral Manifolds in Nonlinear Mechanics, Nauka, Moscow (1973).

    Google Scholar 

  18. V. A. Pliss, “Reduction principle in the theory of stability of motion,”Izv. Akad. Nauk SSSR. Ser. Mat.,28, No. 6, 1297–1324 (1964).

    Google Scholar 

  19. A. Kelley, “Stability of the center-stable manifold,”J. Math. Anal. Appl.,18, No. 2, 20–24 (1967).

    Google Scholar 

  20. Yu. A. Mitroporskii and E. P. Belan, “On the reduction principle in the theory of stability of linear differential equations,”Ukr. Mat. Zh.,20, No. 5, 654–660 (1968).

    Google Scholar 

  21. A. M. Samoilenko, “Investigation of dynamical systems by using the functions of fixed sign,”Ukr. Mat. Zh.,24, No. 3, 374–384 (1972).

    Google Scholar 

  22. K. G. Valeev and O. A. Zhautykov,Infinite Systems of Differential Equations [in Russian], Nauka, Alma-Ata (1974).

    Google Scholar 

  23. Ya. S. Baris, “Reduction principle in the problem of conditional stability,”Mat. Fizika, Issue 26, 3–6 (1979).

  24. O. B. Lykova, “On one-frequency oscillations in systems with slowly varying parameters,”Ukr. Mat. Zh.,8, No. 2, 155–161 (1957).

    Google Scholar 

  25. O. B. Lykova, “Properties of solutions of the systems of nonlinear differential equations with slowly varying parameters,”Ukr. Mat. Zh.,12, No. 3, 267–278 (1960).

    Google Scholar 

  26. Ya. S. Baris and O. B. Lykova,Approximate Integral Manifolds for the Systems of Differential Equations [in Russian], Preprint No. 79.08, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1979).

    Google Scholar 

  27. O. B. Lykova, “Development of the Bogolyubov-Mitropol'skii method of integral manifolds,”Ukr. Mat. Zh.,44, No. 1, 33–46 (1992).

    Google Scholar 

  28. Ya. S. Baris and O. B. Lykova,Approximate Integral Manifolds in the Theory of Stability [in Russian], Preprint No. 88.48, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1988).

    Google Scholar 

  29. Ya. S. Baris and O. B. Lykova,Applications of Approximate Integral Manifolds in the Theory of Stability [in Russian], Preprint No. 89.01, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1989).

    Google Scholar 

  30. Ya. S. Baris and O. B. Lykova, “Integral manifolds and the reduction principle in the theory of stability. I,”Ukr. Mat. Zh.,41, No. 12, 107–113 (1989).

    Google Scholar 

  31. Ya. S. Baris and O. B. Lykova, “Integral manifolds and the reduction principle in the theory of stability. II,”Ukr. Mat. Zh.,42, No. 11, 1315–1321 (1990).

    Google Scholar 

  32. Ya. S. Baris and O. B. Lykova, “Integral manifolds and the reduction principle in the theory of stability,”Dokl. Akad. Nauk SSSR,311, No. 2, 270–273 (1990).

    Google Scholar 

  33. Ya. S. Baris and O. B. Lykova, “Integral manifolds and the reduction principle in the theory of stability. III,”Ukr. Mat. Zh.,43, No. 10, 1324–1329 (1991).

    Google Scholar 

  34. Ya. S. Baris and O. B. Lykova, “Integral manifolds and the reduction principle in the theory of stability. IV,”Ukr. Mat. Zh.,43, No. 12, 1696–1702 (1991).

    Google Scholar 

  35. V. V. Strygin and V. A. Sobolev,Separation of Motions by the Method of Integral Manifolds [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  36. V. M. Gol'dshtein and V. A. Sobolev,Qualitative Analysis of Singularly Perturbed Systems [in Russian], Novosibirsk (1988).

  37. O. B. Lykova, “On the reduction principle in a Banach space,”Ukr. Mat. Zh.,23, No. 4, 464–471 (1971).

    Google Scholar 

  38. O. B. Lykova, “On the reduction principle for differential equations with unbounded operator coefficients,”Ukr. Mat. Zh.,27, No. 2, 240–243 (1975).

    Google Scholar 

  39. J. Marsden and M. McCracken,The Hopf Bifurcation and Its Applications, Springer-Verlag, New York (1976).

    Google Scholar 

  40. D. Henry,Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-Heidelberg-New York (1981).

    Google Scholar 

  41. B. Hassard, N. Kazarinoff, and Y.-H. Wan,Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge-London-New York-New Rochelle-Melbourne-Sydney (1981).

    Google Scholar 

  42. C. Foias, G. R. Sell, and R. Temam, “Variétés inertielles des équations différentielles dissipatives,”C. R. Acad. Sci. Ser. I,301, 139–141 (1985).

    Google Scholar 

  43. C. Foias, O. Manley, and R. Temam, “Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents,”C. R. Acad. Sci. Ser. I,305, 497–500 (1987).

    Google Scholar 

  44. C. Foias, G. R. Sell, and R. Temam, “Inertial manifolds for nonlinear evolutionary equations,”J. Different. Equat.,73, 309–353 (1988).

    Google Scholar 

  45. J. Mallet-Paret and G. R. Sell, “Inertial manifolds for reaction diffusion equations in higher space dimensions,”J. Am. Math. Soc.,1, 805–866 (1988).

    Google Scholar 

  46. R. Temam,Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer Verlag, New York (1988).

    Google Scholar 

  47. P. Constantin, C. Foias, B. Nicolaenko, and R. Temam,Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, New York, Springer (1989).

    Google Scholar 

  48. M. Marion, “Approximate inertial manifolds for the pattern formation Cahn-Hillard equation,”Math. Mod. Num. Anal.,23, 463–488 (1989).

    Google Scholar 

  49. R. Temam, “Induced trajectories and approximate inertial manifolds,”Math. Mod. Num. Anal.,23, 541–581 (1989).

    Google Scholar 

  50. I. D. Chueshov,Mathematical Foundations of the Theory of Irregular Oscillations of Infinite-Dimensional Systems [in Russian], Kharkov University, Kharkov (1991).

    Google Scholar 

  51. I. D. Chueshov,Introduction to the Theory of Integral Manifolds [in Russian], Kharkov University, Kharkov (1992).

    Google Scholar 

  52. R. Temam, “Attractors for the Navier-Stokes equations: localization and approximation,”J. Fac. Sci. Univ. Tokyo. Sect. IA, Math.,36, 629–647 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 45, No. 12, pp. 1653–1660, December, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lykova, O.B. On the reduction principle in the theory of stability of motion. Ukr Math J 45, 1861–1868 (1993). https://doi.org/10.1007/BF01061356

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061356

Keywords

Navigation