Abstract
On the basis of the geometric ideas of Poincaré and Mel'nikov, we study sufficient criteria of the transversal splitting of heteroclinic separatrix manifolds of slowly perturbed nonlinear dynamical systems with a small parameter. An example of adiabatic invariance breakdown is considered for a system on a plane.
Similar content being viewed by others
References
V. K. Mel'nikov, “On the stability of a center under perturbations periodic in time,”Tr. Mosk. Mat. Obshch.,12, No. 1, 3–52 (1963).
Z. Nitecki,Differential Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms, MIT Press, Cambridge (1971).
J. Gruendler, “The existence of homoclinic orbits and the method of Mel'nikov for systems in ℝn,”SIAM J. Math. Anal.,16, No. 5, 907–931 (1985).
M. Yamashita, “Mel'nikov vector in higher dimensions,”Nonlinear Analysis TMA,18, No. 7, 657–670 (1992).
Yu. A. Mitropol'skii, I. O. Antonishin, A. K. Prikarpatskii, and V. G. Samoilenko, “Symplectic analysis of dynamical systems with a small parameter. A new test for the stabilization of homoclinic separatrices and its applications,”Ukr. Mat. Zh.,44, No. 1, 46–67 (1992).
S. Wiggins, “Global bifurcation and chaos,”Appl. Math. Sci.,73 (1988).
A. S. Bakai and Yu. P. Stepanovskii,Adiabatic Invariants [in Russian], Naukova Dumka, Kiev (1985).
V. I. Arnol'd,Mathematical Methods in Classical Mechanics [in Russian], Nauka, Moscow (1988).
Yu. A. Mitropol'skii, A. M. Samoilenko, and V. P. Kulik,Investigation of Dichotomy of Linear Systems of Differential Equations by Lyapunov Function [in Russian], Naukova Dumka, Kiev (1990).
A. K. Prikarpatskii and I. V. Mikityuk,Algebraic Aspects of Integrability of Nonlinear Dynamical Systems on Manifolds [in Russian], Naukova Dumka, Kiev (1991).
S. Wiggins and Ph. Holmes, “Homoclinic orbits in slowly varying oscillations,”SIAM J. Math. Anal.,18, No. 3, 612–629 (1987).
H. L. Kurland and M. Levi, “Transversal heteroclinic intersection in slowly varying systems,” in:Proc. Conf. Qualit. Meth. Anal. Nonlinear Dynamics., New Hampshire, USA, 1986,SIAM. Phil. (1988), pp. 29–38.
A. V. Knyazyuk, “On a generalization of the Riemann lemma,”Dokl. Akad. Nauk Ukr. SSR. Ser. A, No. 1, 19–22 (1982).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 45, No. 12, pp. 1668–1681, December, 1993.
Rights and permissions
About this article
Cite this article
Samoilenko, A.M., Timchishin, O.Y. & Prikarpatskii, A.K. The Poincaré-Mel'nikov geometric analysis of the transversal splitting of manifolds of slowly perturbed nonlinear dynamical systems. I. Ukr Math J 45, 1878–1892 (1993). https://doi.org/10.1007/BF01061358
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01061358