Abstract
We obtain a generalization of the Gaschutz criterion of existence of exact irreducible representations of finite groups to the class of normal groups.
Similar content being viewed by others
References
D. J. S. Robinson,Finiteness Conditions and Generalized Soluble Groups, Springer Verlag, Berlin (1972).
W. Gaschutz, “Endliche Gruppen mit treuen absolutirreduziblen Darstellungen,”Math. Nachr.,12, No. 3/4, 253–255 (1954).
É. M. Zhmud', “On isomorphic linear representations of finite groups,”Mat. Sb.,38, No. 4, 417–430 (1956).
A. V. Tushev, “Irreducible representations of locally polycyclic groups over an absolute field,”Ukr. Mat. Zh.,42, No. 10, 1389–1394 (1990).
D. J. S. Robinson and Z. Zhang, “Groups whose proper quotients have finite derived subgroups,”J. Algebra,118, 346–368 (1988).
L. Fuchs,Infinite Abelian Groups. Vol. II, Academic Press, New York-London (1973).
S. Lang,Algebra [Russian translation], Mir, Moscow (1968).
N. Bourbaki,Modules, Rings, Forms [Russian translation], Nauka, Moscow (1966).
J. S. Wilsin, “Some properties of groups inherited by normal subgroups of finite index,”Math. Z.,144, No. 1. 19–21 (1970).
K. S. Brown,Cohomology of Groups, Springer-Verlag, New York-Heidelberg-Berlin (1982).
A. Guichardet,Cohomologie des Groupes Topologiques et des Algebres de Lie, Cedic/Fernand, Nathan, Paris (1980).
Author information
Authors and Affiliations
Additional information
Translated from Ukrainskii Matematicheskii Zhumal, Vol. 45, No. 12, pp. 1688–1694, December, 1993.
Rights and permissions
About this article
Cite this article
Tushev, A.V. On exact irreducible representations of locally normal groups. Ukr Math J 45, 1900–1906 (1993). https://doi.org/10.1007/BF01061360
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01061360