@article{Maslyuk_2017, title={Continuity of the solutions of one-dimensional boundary-value problems in Hölder
spaces with respect to the parameter}, volume={69}, url={https://umj.imath.kiev.ua/index.php/umj/article/view/1677}, abstractNote={We introduce the most general class of linear boundary-value problems for systems of ordinary differential equations of order $r \geq 2$ whose solutions belong to the complex Hölder space $C^{n+r,\alpha} ([a, b])$, where $n \in Z_{+},\;
0 < \alpha \leq 1$ и $[a, b] \subset R$, and
$[a, b] \subset R$. We establish sufficient conditions under which the solutions of these problems continuously depend on the
parameter in the H¨older space $C^{n+r,\alpha} ([a, b])$.}, number={1}, journal={Ukrains’kyi Matematychnyi Zhurnal}, author={Maslyuk, H. O.}, year={2017}, month={Jan.}, pages={83-91} }