@article{Maslyuchenko_Maslyuchenko_Myronyk_2015, title={Properties of the Ceder Product}, volume={67}, url={https://umj.imath.kiev.ua/index.php/umj/article/view/2021}, abstractNote={We study properties of the Ceder product $X ×_b Y$ of topological spaces $X$ and $Y$, where $b ∈ Y$, recently introduced by the authors. Important examples of the Ceder product are the Ceder plane and the Alexandroff double circle. In particular, for $i = 0, 1, 2, 3$ we establish necessary and sufficient conditions for the Ceder product to be a $T_i$ -space. We prove that the Ceder product $X ×_b Y$ is metrizable if and only if the spaces $X$ and $\overset{.}{Y}=Y\backslash \left\{b\right\}$ are metrizable, $X$ is $σ$-discrete, and the set $\{b\}$ is closed in $Y$. If $X$ is not discrete, then the point $b$ has a countable base of closed neighborhoods in $Y$.}, number={6}, journal={Ukrains’kyi Matematychnyi Zhurnal}, author={Maslyuchenko, V. K. and Maslyuchenko, O. V. and Myronyk, O. D.}, year={2015}, month={Jun.}, pages={780-787} }