@article{Kalati_2014, title={A Generalization of Lifting Modules}, volume={66}, url={https://umj.imath.kiev.ua/index.php/umj/article/view/2239}, abstractNote={We introduce the notion of $I$ -lifting modules as a proper generalization of the notion of lifting modules and present some properties of this class of modules. It is shown that if $M$ is an $I$ -lifting direct projective module, then $S/▽$ is regular and $▽ = \text{Jac} S$, where $S$ is the ring of all $R$-endomorphisms of $M$ and $▽ = \{ϕ ∈ S | Im ϕ ≪ M\}$. Moreover, we prove that if $M$ is a projective $I$ -lifting module, then $M$ is a direct sum of cyclic modules. The connections between $I$ -lifting modules and dual Rickart modules are presented.}, number={11}, journal={Ukrains’kyi Matematychnyi Zhurnal}, author={Kalati, Amouzegar T.}, year={2014}, month={Nov.}, pages={1477–1484} }