@article{Patil_Shaba_2023, title={Sharp initial coefficient bounds and the Fekete–Szegö problem for some certain subclasses of analytic and bi-univalent functions}, volume={75}, url={https://umj.imath.kiev.ua/index.php/umj/article/view/6602}, DOI={10.37863/umzh.v75i2.6602}, abstractNote={<p>UDC 517.5</p> <p>We introduce two new subclasses $\mathcal{U}_{\Sigma}(\alpha,\lambda)$ and ${\mathcal{B}_1}_{\Sigma}(\alpha)$ of analytic bi-univalent functions defined in the open unit disk $\mathbb{U}$, which are associated with the Bazilevich functions.<span class="Apple-converted-space"> </span>In addition, for functions that belong to these subclasses, we obtain sharp bounds for the initial Taylor–Maclaurin coefficients $a_2$ and $a_3,$ as well as the sharp estimate for the Fekete–Szegö functional $a_3-\mu a_2^2.$</p>}, number={2}, journal={Ukrains’kyi Matematychnyi Zhurnal}, author={Patil, A. B. and Shaba, T. G.}, year={2023}, month={Mar.}, pages={198 - 206} }